K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2018

Để n+5/3 là số tự nhiên

=> n+5 chia hết cho 3

=> n chia 3 dư 1

=> n+6 chia 3 dư 7

=> n+6 ko chia hết cho 3

=> n+6/3 ko là số tự nhiên

=> ko tồn tại số tự nhiên n để các phân số n+5/3 và n+6/3 đồng thời là số tự nhiên

Tk mk nha

17 tháng 1 2018

Bạn vào câu hỏi tương tự nhé! Sẽ có câu trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 8

Lời giải:

Giả sử 2 phân số trên có thể đồng thời là số tự nhiên.

Ta có:
$\frac{7n-1}{4}$ là số tự nhiên

$\Rightarrow 7n-1\vdots 4$
$\Rightarrow 7n-1-8n\vdots 4$

$\Rightarrow -n-1\vdots 4\Rightarrow n+1\vdots 4$

$\Rightarrow n=4t-1$ với $t$ tự nhiên.

Khi đó:
$\frac{5n+3}{12}=\frac{5(4t-1)+3}{12}=\frac{20t-2}{12}$
$=\frac{10t-1}{6}$

Vì $10t-1$ lẻ với mọi $t$ tự nhiên nên $10t-1\not\vdots 2$

$\Rightarrow 10t-1\not\vdots 6$

$\Rightarrow \frac{5n+3}{12}$ không là số tự nhiên (trái với giả sử)

Vậy không thể tồn tại stn $n$ để 2 phân số trên đều là số tự nhiên.