Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu AB > AC thì ∠C > ∠B (góc đối diện với cạnh lớn hơn là góc lớn hơn)
Điều này trái với giả thiết ∠B > ∠C nên không xảy ra.
Nếu AB = AC thì ΔABC cân tại A
⇒ ∠B = ∠C(tính chất tam giác cân)
Điều này trái với giả thiết ∠B > ∠C nên không xảy ra.
Vậy nếu ∠B > ∠C thì AC > AB.
vì trong 1 tam giác chỉ có 1 đường cao chung
mà 1 cạnh dài,1 cạnh ngắn
nếu cộng thêm đường cao vào vs cạnh dài hơn
và cộng đường cao vào vs cạnh ngắn hơn
thì đương nhiên ta đã ra điều phải chứng minh rùi
mình k giỏi lập luận nên lấy ví dụ cho dẽ hiểu nè:
giả sử đường cao=2cm,cạnh dài=6cm,cạnh ngắn=4cm
tổng đường cao và cạnh dài:2+6=8
tổng đường cao và cạnh ngắn:2+4=6
đều có chung 2,6>4
=>điều phải chứng minh
Khi so sánh AB và AC sẽ có 3 trường hợp xảy ra: AC < AB; AC = AB; AC > AB
+ Nếu AC < AB
Xét tam giác ABC có AC < AB
=> góc B < góc C ( quan hệ giữa cạnh và góc đối diện trong tam giác )
=> Trái với giả thiết góc B > góc C => vô lý
+ Nếu AC = AB
AC = AB => Tam giác ABC cân tại A ( dấu hiệu nhận biết )
=> góc B = góc C ( tính chất )
=> Trái với giả thiết góc B > góc C => vô lý
Vậy nếu tam giác ABC có góc B > góc C thì AC > AB ( đpcm )
1/Giả sử trong 1 tam giác có 2 hóc tù thì tổng 3 góc của tam giác đó sẽ lớn hơn 180 độ
=>trong 1 tam giác chỉ có duy nhất 1 góc tù
2/Trong 1 tam giác nếu góc nhỏ nhất bằng 60 độ thì tổng 3 góc của tam giác đó sẽ lớn hơn 180 độ
=> trong một tam giác góc nhỏ nhất không thể lớn hơn 60 độ
3/Xét tam giác AMB = tam giác AMC (c.c.c)
=> góc BMA = góc CMA
Mặt khác góc BMA + góc CMA = 180 độ
=> góc BMA = góc CMA = 90 độ
=> AM vuông góc BC
=> AM là đường cao của tam giác hạ từ đỉnh A
Tam giác BMA = tam giác CMA
=> góc BAM = góc CAM
=> AM là tia phân giác của góc A