Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
$R + H_2SO_4 \to RSO_4 + H_2$
Theo PTHH : $n_{hh\ kim\ loại} = n_{H_2} = \dfrac{7,84}{22,4} = 0,35(mol)$
Suy ra : $n_X = 0,2(mol) ; n_Y = 0,1(mol) ; n_Z = 0,05(mol)$
Gọi nguyên tử khối của X,Y,Z lần lượt là 3A,5A,7A
Ta có :
$0,2.3A + 0,1.5A + 0,05.7A = 11,6 \Rightarrow A = 8$
Suy ra : $X = 8.3 = 24(Magie) ; Y = 8.5 = 40(Canxi) ; Z = 8.7 = 56(Fe)$
Gọi \(\left\{{}\begin{matrix}n_{Al}=3a\left(mol\right)\\n_R=2a\left(mol\right)\end{matrix}\right.\)
=> 81a + 2a.MR = 12,9 (1)
PTHH: 2Al + 3H2SO4 --> Al2(SO4)3 + 3H2
3a------------------------------>4,5a
R + H2SO4 --> RSO4 + H2
2a----------------------->2a
=> \(6,5a=\dfrac{1,3}{2}=0,65\)
=> a = 0,1 (mol)
=> MR = 24 (g/mol)
=> R là Mg(Magie)
Bài 1.2:
$2SO_2+O_2\rightarrow 2SO_3$
Không mất tính tổng quát giả sử ban đầu có 1 mol $SO_2$ và 1 mol $O_2$
Sau phản ứng bình chứa $1-a$ mol $SO_2$; $1-0,5a$ mol $O_2$ và a mol $SO_3$
Ta có: \(\dfrac{a.100\%}{1-a+1-0,5a+a}=35,5\%\Rightarrow a=0,6\)
Vậy hiệu suất là 60%
Gọi 3 kim loại cần tìm là X,Y,Z
Đặt 3M là nguyên tử khối của X
=>5M là nguyên tử khối của Y
7M là nguyên tử khối của Z
Đặt 4x là số mol của X
=>2x là số mol của Y
x là số mol của Z
nH2=7,84/22,4=0,35(mol)
Nếu như 3 kim loại đứng trước H thì có thể p/ứ với HCl
n hỗn hợp=nH2
=>4x+2x+x=0,35(mol)
=>x=0,05(mol)
=>nX=0,05.4=0,2(mol)
nY=0,05.2=0,1(mol)
nZ=0,05(mol)
===>m hỗn hợp=0,2.3M+0,1.5M+0,05.7M=11,6
=>M=8
=>X=8.3=24(Mg)
Y=8.5=40(Ca)
Z=8.7=56(Fe)
Đặt \(\left\{{}\begin{matrix}M_X=3a\left(g/mol\right)\\M_Y=3,375a\left(g/mol\right)\\M_Z=7a\left(g/mol\right)\end{matrix}\right.\) và \(\left\{{}\begin{matrix}n_X=x\left(mol\right)\\n_Y=2x\left(mol\right)\\n_Z=3x\left(mol\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m_X=3ax\left(g\right)\\m_Y=3,375a.3x=6,75ax\left(g\right)\\m_Z=7a.3x=21ax\left(g\right)\end{matrix}\right.\)
\(\Rightarrow3ax+6,75ax+21ax=24,6\Leftrightarrow ax=0,8\)
\(\Rightarrow m_X=3.0,8=2,4\left(g\right)\)
\(n_{H_2}=\dfrac{2,24}{22,4}=0,1\left(mol\right)\)
Gọi hóa trị của X là n (n nguyên dương)
PTHH: \(2X+2nHCl\rightarrow2XCl_n+nH_2\)
\(\dfrac{0,2}{n}\)<--------------------------0,1
\(\Rightarrow M_X=\dfrac{2,4}{\dfrac{0,2}{n}}=12n\left(g/mol\right)\)
Xét n = 2 thỏa mãn \(\Rightarrow M_X=12.2=24\left(g/mol\right)\)
\(\Rightarrow\left\{{}\begin{matrix}M_Y=\dfrac{3,375}{3}.M_X=27\left(g/mol\right)\\M_Z=\dfrac{7}{3}.M_X=56\left(g/mol\right)\end{matrix}\right.\)
Vậy ba kim loại X, Y, Z lần lượt là magie (Mg), nhôm (Al), sắt (Fe)
Giả sử \(\left\{{}\begin{matrix}n_{Al}=a\left(mol\right)\\n_M=1,5a\left(mol\right)\end{matrix}\right.\)
=> 27a + MM.1,5a = 6,3 (g) (1)
\(n_{H_2}=\dfrac{6,72}{22,4}=0,3\left(mol\right)\)
- TH1: Nếu M không tác dụng với dd HCl
PTHH: 2Al + 6HCl --> 2AlCl3 + 3H2
0,2<------------------0,3
=> a = 0,2 (mol)
(1) => MM = 3 (L)
- TH2: Nếu M tác dụng với dd HCl
PTHH: 2Al + 6HCl --> 2AlCl3 + 3H2
a----------------------->1,5a
M + 2HCl --> MCl2 + H2
1,5a---------------->1,5a
=> 1,5a + 1,5a = 0,3
=> a = 0,1
(1) => MM = 24 (g/mol)
=> M là Mg
\(\left\{{}\begin{matrix}\%m_{Al}=\dfrac{0,1.27}{6,3}.100\%=42,857\%\\\%m_{Mg}=\dfrac{0,15.24}{6,3}.100\%=57,143\%\end{matrix}\right.\)
Vì tỷ lệ nguyên tử khối là 3:5:7.
⇒ Gọi nguyên tử khối của chúng lần lượt là: 3M, 5M và 7M.
Tỷ lệ số mol là 4:2:1
⇒ Gọi số mol của chúng lần lượt là: 4a, 2a và a (mol)
⇒ 3M.4a + 5M.2a + 7M.a = 11,6 ⇒ M.a = 0,4 (1)
Ta có: \(n_{H_2}=\dfrac{7,84}{22,4}=0,35\left(mol\right)\)
Gọi hh 3 KL chung là X.
⇒ nX = 4a + 2a + a = 7a (mol)
PT: \(X+2HCl\rightarrow XCl_2+H_2\)
Theo PT: \(n_X=n_{H_2}=0,35\left(mol\right)\)
⇒ 7a = 0,35 (2)
Từ (1) và (2) ⇒ a = 0,05 (mol), M = 8
⇒ Nguyên tử khối của các KL lần lượt là: 24, 40 và 56
Vậy: Các KL lần lượt là: Mg, Ca và Fe.
4) x,y lần lượt là số mol của M và M2O3
=> nOxi=3y=nCO2=0,3 => y=0,1
Đề cho x=y=0,1 =>0,1M+0,1(2M+48)=21,6 =>M=56 => Fe và Fe2O3
=> m=0,1.56 + 0,1.2.56=16,8
2)X + 2HCl === XCl2 + H2
n_h2 = 0,4 => X = 9,6/0,4 = 24 (Mg)
=>V_HCl = 0,4.2/1 = 0,8 l
a) Do dd sau pư có 3 chát tan với nồng độ % bằng nhau
=> \(m_{Al_2\left(SO_4\right)_3}=m_{ZnSO_4}=m_{H_2SO_4\left(dư\right)}\)
Gọi số mol Al, Zn là a, b (mol)
PTHH: 2Al + 3H2SO4 --> Al2(SO4)3 + 3H2
a----->1,5a------->0,5a----->1,5a
Zn + H2SO4 --> ZnSO4 + H2
b----->b--------->b----->b
=> \(\left\{{}\begin{matrix}m_{Al_2\left(SO_4\right)_3}=342.0,5a=171a\left(g\right)\\m_{ZnSO_4}=161b\left(g\right)\end{matrix}\right.\)
=> 171a = 161b
=> \(\dfrac{a}{b}=\dfrac{161}{171}\) (1)
Có: \(\dfrac{m_{Al}}{m_{Zn}}=\dfrac{27.n_{Al}}{65.n_{Zn}}=\dfrac{27}{65}.\dfrac{161}{171}=\dfrac{483}{1235}\)
b) \(n_{H_2}=1,5a+b=\dfrac{11,2}{22,4}=0,5\left(mol\right)\) (2)
(1)(2) => \(\left\{{}\begin{matrix}a=\dfrac{161}{825}\left(mol\right)\\b=\dfrac{57}{275}\left(mol\right)\end{matrix}\right.\)
=> \(x=\dfrac{161}{825}.27+\dfrac{57}{275}.65=\dfrac{5154}{275}\left(g\right)\)
\(m_{H_2SO_4\left(dư\right)}=m_{Al_2\left(SO_4\right)_3}=342.0,5\dfrac{161}{825}=\dfrac{9177}{275}\left(g\right)\)
=> \(m_{H_2SO_4\left(bđ\right)}=98\left(1,5a+b\right)+\dfrac{9177}{275}=\dfrac{22652}{275}\left(g\right)\)
=> \(y=\dfrac{\dfrac{22652}{275}.100}{10}=\dfrac{45304}{55}\left(g\right)\)