K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2016

Câu hỏi nài có trên OLM  rồi .

11 tháng 9 2018

Đáp án B

Ta có 

Với mỗi

và 

Ta có

Khi đó 

Và 

Vậy

.

16 tháng 7 2019

Đáp án C.

Ta có  

log b a 2018 = log b a 2018 ⇔ log b a 2018 = 2018 log b a ⇔ log b a = 0 log b a 2017 = 2018

⇔ a = 1 log b a = 2018 2017 ⇔ a = 1 a = b 2018 2017

Do a là số thực dương nên với mỗi số nguyên b thỏa mãn điều kiện 2 ≤ b ≤ 200  thì sẽ tạo ra một cặp số a ; b  thỏa mãn yêu cầu đề bài.

Do vậy có 2 × 200 − 2 1 + 1 = 398  cặp. Vậy ta chọn C.

Lời giải sai: log b a 2018 = 2018 log b a ⇔ log b a 2017 = 2018 , tức là bỏ mất trường hợp  log b a = 0   , từ đó dẫn đến chọn đáp án B

19 tháng 5 2017

4 tháng 2 2016

Xét ( a2 + b2 + c2 + d2 )  - ( a + b + c + d)

        = a(a -1)  + b( b -1) + c( c – 1) + d( d – 1)

Vì a là  số nguyên dương nên a, (a – 1) là hai số tự nhiên liên tiếp

=> a(a-1) chia hết cho 2. Tương tự ta có b(b-1); c(c-1); d(d-1) đều chia hết cho 2

=> a(a -1)  + b( b -1) + c( c – 1) + d( d – 1) là số chẵn

Lại có a2 + c2 = b2 + d2=>  a2 + b2 + c2 + d2 = 2( b2 + d2) là số chẵn.

Do đó a + b + c + d là số chẵn mà a + b + c + d > 2 (Do a, b, c, d thuộc N*)

 a + b + c + d là hợp số.

19 tháng 4 2018

Xét \(( a^2 + b^2 + c^2 + d^2 ) - ( a + b + c + d)\)

\(= a(a -1) + b( b -1) + c( c – 1) + d( d – 1)\)

Vì a là số nguyên dương nên $a$, $(a – 1)$ là hai số tự nhiên liên tiếp

\(\Rightarrow a-1⋮2\)

Tương tự ta có $b(b-1)$; $c(c-1)$; $d(d-1)$ đều chia hết cho 2

=> $a(a -1) + b( b -1) + c( c – 1) + d( d – 1)$ là số chẵn

Lại có \(a^2 + c^2 = b^2 + d^2=> a^2 + b^2 + c^2 + d^2 = 2( b^2 + d^2)\) là số chẵn.

Do đó $a + b + c + d$ là số chẵn mà $a + b + c + d > 2$ (Do \(a,b,c,d\in N^{sao}\))

\(\Rightarrow\) $a + b + c + d$ là hợp số.

25 tháng 12 2019

Chọn đáp án A.

27 tháng 1 2016

BÀI TOÁN PHỤ: CHứng minh rằng số chính phương lẻ chia cho 8 dư 1.

Giải: Xét số chính phương lẻ là \(m^2\left(m\in Z\right)\)

Như vậy m là số lẻ, đặt \(m=2n+1\)

Ta có:

\(m^2=\left(2n+1\right)^2=4n^2+4n+1=4.n.\left(n+1\right)+1\)

Vì n(n+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2

\(\Rightarrow4n\left(n+1\right) \) chia hết cho 8

\(\Rightarrow4.n.\left(n+1\right)+1\) chia 8 dư 1

Vậy ta có điều phải chứng minh.

Vì a lẻ nên \(a\ne0\), phương trình \(ax^2+bx+c=0\) là phương trình bậc hai.

Xét \(\Delta=b^2-4ac\): b lẻ, theo bài toán phụ có \(b^2=8k+1\left(k\in Z\right)\)

a,c lẻ \(\Rightarrow\) \(ac\) lẻ

Đặt \(ac=2l-1\left(l\in Z\right)\)

Do đó \(\Delta=b^2-4ac=8k+1-4.\left(2l-1\right)=8k+1-8l+4=8\left(k-l\right)+5 \)chia cho 8 dư 5, theo bài toán phụ trên ta có \(\Delta\) không phải số chính phương.

\(\Delta\) là số nguyên, không phải óố chính phương \(\Rightarrow\sqrt{\Delta}\) là số vô tỉ

Nghiệm của phương trình đã cho (nếu có) là: \(x=\frac{-b\pm\sqrt{\Delta}}{2a}\)

b,a\(\in Z\)\(\sqrt{\Delta}\) vô tỉ nên x là vô tỉ.

Vậy phương trình có nghiệm nếu có thì các nghiệm ấy không thể là số hữu tỉ.

  

  


ơng   là phươngax2+bx+c=0

 

 

 

27 tháng 1 2016

Bài này có sự liên quan giữa các số lẻ a;b;c không? ( không = khó )

18 tháng 3 2017

AH
Akai Haruma
Giáo viên
29 tháng 12 2016

Lời giải:

Từ điều kiện đề bài dễ dàng suy ra \(a,b,c<\sqrt{3}<2\)

Sử dụng phương pháp hệ số bất định, ta sẽ CM: \(2a+\frac{1}{a}\geq \frac{5}{2}+\frac{a^2}{2}\)

BĐT này luôn đúng vì \(\Leftrightarrow (2-a)(a-1)^2\geq 0\)

Thiết lập tương tự với $b,c$, suy ra \(2(a+b+c)+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq \frac{15}{2}+\frac{a^2+b^2+c^2}{2}=9\) (đpcm)

Dấu $=$ xảy ra khi $a=b=c=1$