Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. a. Theo ht 4' trg đm //, ta có: Rtđ= (R1.R2)/(R1+R2)= (3.6)/(3+6)=2 ôm
b.Theo ĐL ôm, ta có: I= U/Rtđ=24/2=12 A
I1=U/R1=24/3=8 ôm
I2=U/R2=24/6=4 ôm
2. a. Theo ht 4' trg đm //, ta có: Rtđ=(R1.R2.R3)/(R1+R2+R3)= (6.12.4)/(6+12+4)=13,09 ôm
b. Áp dụng ĐL Ôm, ta có: U=I.R=3.13,09=39,27 V
c. Theo ĐL Ôm, ta có:
I1=U/R1=39,27/6=6.545 A
I2=U/R2=39,27/12=3,2725 A
I3=U/R3=39,27/4=9.8175 A
Điện trở tương đương của đoạn mạch là:
\(R_{tđ}=\dfrac{R_1.R_2}{R_1+R_2}=\dfrac{30.60}{30+60}=20\left(\Omega\right)\)
Do mắc song song nên \(U=U_1=U_2=30V\)
Cường độ dòng điện chạy qua mạch chính và mỗi mạch rẽ:
\(\left\{{}\begin{matrix}I=\dfrac{U}{R_{tđ}}=\dfrac{30}{20}=1,5\left(A\right)\\I_1=\dfrac{U_1}{R_1}=\dfrac{30}{30}=1\left(A\right)\\I_2=\dfrac{U_2}{R_2}=\dfrac{30}{60}=0,5\left(A\right)\end{matrix}\right.\)
Điện trở tương đương lúc này là:
\(R_{tđ}=R_{12}+R_3=20+40=60\left(\Omega\right)\)
Do mắc nối tiếp nên \(I=I_{12}=I_3=1,5\left(A\right)\)
Nhiệt năng đoạn mạch tiêu thụ trong 30ph:
\(A=P.t=I^2.R.t=1,5^2.60.30.60=243000\left(J\right)\)
Nhiệt lượng tỏa ra của R3 trong 30ph:
\(Q_{tỏa_3}=A_3=I_3^2.R_3.t=1,5^2.40.30.60=162000\left(J\right)\)
\(a.R_{tđ}=R_1+R_2=4+6=10\Omega\\ b.R_{tđ}'=R_1+\dfrac{R_2.R_3}{R_2+R_3}=4+\dfrac{6.12}{6+12}=8\Omega\\ I=\dfrac{U_{AB}}{R_{tđ}'}=\dfrac{18}{8}=2,25A\\ Vì.R_1ntR_{23}\\ \Rightarrow I=I_1=I_{23}=2,25A\\ U_1=I_1.R_1=4.2,25=9V\\ U_{23}=U_{AB}-U_1=18-9=9V\\ Vì.R_2//R_3\Rightarrow U_{23}=U_2=U_3=9V\\ I_3=\dfrac{U_3}{R_3}=\dfrac{9}{12}=0,75A\)
a) \(R_1ntR_2\Rightarrow R_{tđ}=R_1+R_2=4+6=10\Omega\)
\(I_m=\dfrac{U}{R_{tđ}}=\dfrac{18}{10}=1,8A\)
b) CTM: \(R_1nt\left(R_2//R_3\right)\)
\(R_{23}=\dfrac{R_2\cdot R_3}{R_2+R_3}=\dfrac{6\cdot12}{6+12}=4\Omega\)
\(R_{tđ}=R_1+R_{23}=4+4=8\Omega\)
c)\(I_m=\dfrac{U}{R_{tđ}}=\dfrac{18}{8}=2,25A\)
\(R_1nt\left(R_2//R_3\right)\Rightarrow I_{23}=I_1=I_m=2,25A\)
\(U_{23}=I_{23}\cdot R_{23}=2,25\cdot4=9V\Rightarrow U_3=9V\)
\(I_3=\dfrac{U_3}{R_3}=\dfrac{9}{12}=0,75A\)
a. \(R=\dfrac{R1.R2}{R1+R2}=\dfrac{9.18}{9+18}=6\left(\Omega\right)\)
b. \(U=U1=U2=I1.R1=0,5.9=4,5V\left(R1\backslash\backslash\mathbb{R}2\right)\)
c. \(\left\{{}\begin{matrix}I2=U2:R2=4,5:18=0,25A\\I=I1+I2=0,5+0,25=0,75A\end{matrix}\right.\)
a. Điên trở tương đương của đoạn mạch này là :
\(R_{tđ}=\dfrac{R_1.R_2}{R_1+R_2}=\dfrac{60.12}{60+12}=10\Omega\)
b. CĐDĐ qua mạch chính là :
\(I=\dfrac{U}{R}=\dfrac{2,4}{10}=0,24A\)
Vì \(R_1\)//\(R_2\) nên :
\(U=U_1=U_2=2,4V\)
CĐDĐ qua các đoạn mạch rẽ là :
\(I_1=\dfrac{U_1}{R_1}=\dfrac{2,4}{60}=0,04A\)
\(\Rightarrow I_2=0,24-0,04=0,2A\)
c. Vì điện trở \(R_3\) nt ( \(R_1\)//\(R_2\)) nên điện trở tương đương toàn mạch là :
\(R_{123}=R_{12}+R_3=10+16=26\Omega\)
\(\Rightarrow\) CĐDĐ qua mạch chính là :
\(I=\dfrac{U}{R_{123}}=\dfrac{2,4}{26}\approx0,1A\)
Vậy : a. Điện trở tương đương của đoạn mạch \(R_1\)//\(R_2\) là \(10\Omega\)
b. I = 0,24A ; \(I_1=0,04A\) ; \(I_2=0,2A\)
c. \(I_{123}\) = 0,1A