K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2017

Giả sử chữ số 2 đứng đầu. Khi đó, chữ số 2 kia sẽ được xếp vào một trong 7 chỗ còn lại. Có 7 cách. Khi đã sắp xếp xong hai chữ số 2, còn 6 chỗ, ta xếp 9 chữ số khác 2 vào 6 chỗ đó. Ta có 9 6  cách. Theo quy tắc nhân, có 7 .   9 6  số gồm 8 chữ số mà chữ số hai đướng đầu.

• Chữ số 2 không đứng đầu. Khi đó, trong 8 chữ số khác 0 và khác 2, ta chọn một chữ số để xếp vào vị trí đầu. Có 8 cách.

Chọn 2 chỗ trong 7 chỗ để xếp hai chữ số 2. Có C 7 2  cách.

Xếp 9 chữ số (khác 2) vào năm vị trí còn lại, có   9 5  cách.

Theo quy tắc nhân, có 8 .   C 7 2 .   9 5  số mà chữ số 2 không đứng đầu.

Theo quy tắc cộng , số các số có 8 chữ số mà có đúng hai chữ số 2 là

 

7 .   9 6   +   8 .   C 7 2 .   9 5   =   13640319

29 tháng 12 2021

Có 2 số cố định là 2 và 5 thì ta có : 2!×6!=1440

20 tháng 8 2021

a) TH1 : Xét số thỏa yêu cầu kể cả chữ số đầu tiên bên trái =0

Chọn 3 chữ số lẻ có C35 cách

Chọn 3 chữ số chẵn có C35 cách

Sắp xếp 6 chữ số này có 6! cách

Vậy có C35 . C35 . 6! số

TH2 : Xét số có 6 chữ số thỏa mãn mà chữ số đầu tiên bên trái =0

Chọn 3 chữ số lẻ có C35 cách

Chọn 2 chữ số chẵn có C24 cách

Sắp xếp 5 chữ số có 5! cách

Vậy có C35 . C24 . 5! số

Vậy có C35 .C35. 6! - C35.C24.5! số tự nhiên gồm 6 chữ số khác nhau trong đó có 3 chữ số chẵn 3 chữ số lẻ

 

16 tháng 8 2017

Phương án 1: Xét các số được lập có 3 chữ số lẻ, 3 chữ số chẵn trong đó không có số 0.

+ Bước 1: Chọn 3 số lẻ, có  cách.

+ Bước 2: Chọn 3 số chẵn, có   cách.

+ Bước 3: Xếp thứ tự 6 chữ số vừa lấy theo hàng ngang, có 6! = 720 cách.

Theo quy tắc nhân thì số các số trong phương án này là: 10.4.720 = 28800 số.

Phương án 2: Xét các số được lập có 3 chữ số lẻ, 3 chữ số chẵn trong đó có số 0.

Tương tự như trên, số các số tự nhiên trong phương án này là:  số.

Vậy số các số tự nhiên thỏa mãn yêu cầu là: 28800 + 36000 = 64800 số.

Chọn B.

NV
7 tháng 3 2021

Chọn 2 số lẻ từ 5 chữ số lẻ: \(C_5^2\)

Chọn 3 chữ số chẵn từ 5 chữ số chẵn: \(C_5^3\)

Xếp 8 chữ số theo thứ tự bất kì: \(C_5^2.C_5^3.\dfrac{8!}{2!.2!.2!}\)

Chọn 3 chữ số chẵn từ 5 chữ số chẵn trong đó có mặt số 0: \(C_4^2\)

Xếp 8 chữ số (có mặt số 0) sao cho số 0 đứng đầu: \(C_5^2C_4^2.\dfrac{7!}{2!.2!}\)

Số số thỏa mãn: \(C_5^2C_5^2\dfrac{8!}{2!.2!.2!}-C_5^2C_4^2.\dfrac{7!}{2!.2!}=...\)

9 tháng 3 2021

Đưa các chữ số của số tự nhiên cần lập vào các ô trống:

 .  .  .  .  .  .  .  . 

TH1: Có chữ số 0: 

Đưa 0 vào : \(C^2_7\) cách 

Chọn và đưa 2 số chẵn còn lại vào : \(C^2_4C^2_6C^2_4\) cách

Chọn 2 chữ số lẻ : \(A^2_5\) cách

=>TH1 lập được \(C^2_7C^2_4C^2_6C^2_4A^2_5=226800\) số

TH2: Không có chữ số 0: 

Chọn và đưa 3 số chẵn vào : \(C^3_4C^2_8C^2_6C^2_4\) cách

Chọn 2 chữ số lẻ : \(A^2_5\) cách

=>TH2 lập được \(C^3_4C^2_8C^2_6C^2_4A^2_5=201600\) số

Vậy có 226800 + 201600 = 428400 số

25 tháng 4 2018

Đáp án A

Xếp một hàng thành 6 ô đánh số từ 1 đển 6 như hình bên:

Số các chữ số gồm 6 chữ số khác nhau được lập từ 6 chữ số đã cho là 5.5! = 600 số.

Ta tìm số các số mà hai chữ số 0 và 5 đứng cạnh nhau:

• Chữ số 0 và 5 cạnh nhau tại ô số 1 và 2 có 1.4! = 24 số.

• Chữ số 0 và 5 đứng cạnh nhau tại các ô (2;3), (3;4), (4;5), (5;6) có 4.2!.4! = 192 số.

Vậy có tất cả 24 + 192 = 216 số mà chữ số 0 và 5 đứng cạnh nhau.

Do đó, số các số thỏa mãn yêu cầu bài toán là 600 – 216 = 384 số.

NV
2 tháng 11 2021

TH1: chữ số hàng đơn vị bằng 0

Chọn 4 chữ số từ 8 chữ số còn lại và hoán vị chúng: \(A_8^4\) cách

4 chữ số này tạo ra 5 khe trống, xếp 3 chữ số 1 vào 5 khe trống đó: \(C_5^3\) cách

\(\Rightarrow A_8^4.C_5^3\) số

TH2: chữ số hàng đơn vị khác 0: có 4 cách chọn

- Chọn 4 chữ số từ 8 chữ số còn lại và hoán vị chúng: \(A_8^4\) cách

Xếp 3 chữ số 1 vào 5 khe trống: \(C_5^3\) cách

- Chọn 4 chữ số từ 8 chữ số còn lại sao cho có xuất hiện số 0, cố định số 0 đứng đầu và hoán vị 3 chữ số còn lại: \(A_7^3\) cách

3 chữ số tạo ra 4 khe trống, xếp 3 chữ số 1 vào 4 khe trống: \(C_4^3\) cách

\(\Rightarrow4\left(A_8^4.C_5^3-A_7^3.C_4^3\right)\) số

Tổng cộng: \(A_8^4.C_5^3+4\left(A_8^4.C_5^3-A_7^3.C_5^3\right)\) số

18 tháng 11 2021

Cho mình hỏi là cái chỗ "4 chữ số này tạo ra 5 khe trống" là sao thế ạ

13 tháng 8 2018

Số tự nhiên chẵn gồm 5 chữ số khác nhau và đúng hai chữ số lẻ có:

·       Chọn 2 chữ số lẻ có  cach; chọn 3 chữ số chẵn có  cách

·    Gọi số có 5 chữ số thỏa mãn đề bài là  .

·    Nếu a5 = 0 thì có 4! Cách chọn  .

·       Nếu a5 0 thì có 2 cách chọn  a5 từ 3 số chẵn đã chọn; khi đó có 3 cách chọn a1 ; 3 cách chọn a2 ; 2 cách chọn a3 và 1 cách chọn a1 .

·       Theo quy tắc cộng và nhân có 10.10.(1.4!+2.3.3.2.1)=6000 số

Số tự nhiên chẵn gồm 5 chữ số khác nhau và có đúng hai chữ số lẻ đứng cạnh nhau có  số.

Suy ra có 6000-3120=2880 số cần tìm.

Chọn D.