K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2019

Đáp án B

Có  n ( Ω ) = C 12 3

Giả sử chọn 3 người có số thứ tự trong hàng lần lượt là a, b, c

Theo giả thiết ta có: a < b < c, b – a > 1, c – b > 1,  a ,   b ,   c ∈ { 1 ,   2 , . . . , 12 } .

Câu 1: Có bao nhiêu cách sắp xếp 5 người khách gồm 3 nam và 2 nữ ngồi vào một hàng 5 ghế nếu:  a. Họ ngồi chỗ nào cũng được?  b. Nam ngồi kề nhau, nữ ngồi kề nhau?  c. Nam và nữ ngồi xen kẻ nhau?  d. Có 2 người luôn ngồi cạch nhau?Câu 2: Có bao nhiều cách sắp xếp chỗ ngồi cho 5 người khách: a.  Vào 5 ghế xếp thành một dãy sao cho vị khách A luôn ngồi chính giữa b. Vào 5 ghế chung quanh một...
Đọc tiếp

Câu 1: Có bao nhiêu cách sắp xếp 5 người khách gồm 3 nam và 2 nữ ngồi vào một hàng 5 ghế nếu:

  a. Họ ngồi chỗ nào cũng được?
  b. Nam ngồi kề nhau, nữ ngồi kề nhau?
  c. Nam và nữ ngồi xen kẻ nhau?
  d. Có 2 người luôn ngồi cạch nhau?
Câu 2: Có bao nhiều cách sắp xếp chỗ ngồi cho 5 người khách:
 a.  Vào 5 ghế xếp thành một dãy sao cho vị khách A luôn ngồi chính giữa
 b. Vào 5 ghế chung quanh một bàn tròm, nếu không có sự phân biệt giữa các ghế này 
Câu 3: Có bao nhiêu cách sắp xếp chỗ ngồi 6 người ngồi vào một dãy 6 ghế hàng ngang nếu:
a. Có 3 người trong số đó muốn ngồi kề nhau
b. Có 2 người trong số đó không muốn ngồi kề nhau
Câu 4: Từ 5 bông vang, 3 bông trắng và 4 bông đỏ( các bông hoa xem như đôi một khác nhau ), ta chọn ra một bó gồm 7 bông:
a. Có bao nhiêu cách chọn ra bó hoa trong đó có đúng một bông đỏ
b. Có bao nhiêu cách chọn ra bó hoa trong đó có ít nhất 3 bông đỏ
c. Có bao nhiêu cách chọn ra bó hoa trong đó có mỗi màu có ít nhất 2 bông

0
25 tháng 12 2021

tk

Chọn 1 cặp vợ chồng: 2

TH1: Cặp còn lại có vợ, ko có chồng:

Vậy có 4 nữ và 3 nam : 7C2

TH2: Cặp còn lại có chồng ko vợ

4 Nam 3 nữ

7C2 => Số cc: 2.2.7C2=84

Vậy p=84/210=2/5

31 tháng 12 2021

Chọn ra 5 học sinh trong 11 học sinh không quan tâm đến thứ tự.

=> Tổ hợp chập 5 của 11 phân tử: \(C_{11}^5\)

6 tháng 8 2021

Có \(A^4_6=\dfrac{6!}{2!}=360\) cách sắp xếp 4 người vào 4 trong 6 ghế xếp theo hàng dọc.

6 tháng 8 2021

9.

Số cách đi từ A đến D là \(3.4.2.2=48\) cách

5 tháng 7 2018

Số cách xếp 10 người thành 1 hàng dọc là: 10!

26 tháng 1 2018

Chọn B

Chọn một tổ trưởng từ 10 người có 10 cách chọn.

Chọn một tổ phó từ 9 người còn lại có 9 cách chọn.

Theo quy tắc nhân, ta có 10.9 = 90 cách chọn thỏa yêu cầu bài toán.

11 tháng 2 2017