K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2018

a) Chọn 7 người từ 10 người để lập một nhóm, ba người còn lại vào nhóm khác. Vậy số cách chia là Giải sách bài tập Toán 11 | Giải sbt Toán 11

b) Ba nhóm tương ứng gồm 5, 3, 2 người, sẽ có số cách chia là Giải sách bài tập Toán 11 | Giải sbt Toán 11

18 tháng 5 2017

a) Chọn 7 người từ 10 để lập một nhóm, ba người còn lại vào nhóm khác. Vậy số cách chia là \(C^7_{10}\)

b) Tương tự, kết quả là \(C^5_{10}.C^3_5\)

8 tháng 12 2015

Khi chọn 1 nhóm thì nhóm kia hoàn toàn xác định (vì là những người còn lại).

Sậy số cách chia hai nhóm bằng số cách chọn ra 1 nhóm có 9 người hoặc 10 người, trong đó có 5 hoặc 6 nữ.

Ta có:

-Số cách chọn 10 người, trong đó có 5 nữ bằng số cách chọn 5 nam từ 8 nam và 5 nữ từ 11 nữ và bằng \(C_8^5.C_{11}^5\)

-Số cách chọn 9 người, trong đó có 5 nữ bằng số cách chọn 4 nam từ 8 nam và 5 nữ từ 11 nữ và bằng \(C_8^4.C_{11}^5\)

-Số cách chọn 10 người, trong đó có 6 nữ bằng số cách chọn 4 nam từ 8 nam và 6 nữ từ 11 nữ và bằng \(C_8^4.C_{11}^6\)

-Số cách chọn 9 người, trong đó có 6 nữ bằng số cách chọn 3 nam từ 8 nam và 6 nữ từ 11 nữ và bằng \(C_8^3.C_{11}^6\)

Tổng số cách chọn là: \(C_8^5.C_{11}^5\)\(C_8^4.C_{11}^5\)\(C_8^4.C_{11}^6\) + \(C_8^3.C_{11}^6\)

   
9 tháng 9 2017

Đáp án D

Xem lô đất có 4 vị trí gồm 2 vị trí 1 nền,1 vị trí 2 nền và 1 vị trí 3 nền

Bước 1: nhóm thứ nhất chọn 1 vị trí cho 2 nền có 4 cách và mỗi cách có 2!=2 cách chọn nền cho mỗi người. 

Suy ra có 4.2=8 cách chọn nền

Bước 2 nhóm thứ hai  chọn 1 trong 3 vị trí còn lại cho 3 nền có 3 cách và mỗi cách có 3!=6 cách chọn nền cho mỗi người. 

Suy ra có 3.6=18 cách chọn nền

 

Vậy có 8.18=144  cách chọn nền cho mỗi người

10 tháng 3 2017

Xem lô đất có 4 vị trí gồm 2 vị trí 1 nền, 1 vị trí 2 nền và 1 vị trí 3 nền.

 Bước 1: nhóm thứ nhất chọn 1 vị trí cho 2 nền có 4 cách và mỗi cách có 2!=2 cách chọn nền cho mỗi người. Suy ra có 4.2 = 8 cách chọn nền.

Bước 2: nhóm thứ hai chọn 1 trong 3 vị trí còn lại cho 3 nền có 3 cách và mỗi cách có 3!= 6  cách chọn nền cho mỗi người.

Suy ra có 3.6=18 cách chọn nền.

Vậy có 8.18=144 cách chọn nền cho mỗi người

Chọn A.

a: Coi 3 bạn nữ như 1 người

Số cách xếp là:

\(8!\cdot3!\)(cách)

b: Số cách xếp là:

\(10!-8!\cdot3!\left(cách\right)\)

1 tháng 2 2017

Số cách phân nhóm 5 học sinh trong số 8 học sinh là C 8 5 . Sau khi phân nhóm 5 học sinh còn lại 3 học sinh được phân hóm còn lại. Vậy sẽ có  C 8 5 cách

Chọn B

1 tháng 8 2016

ta có các TH xảy ra : 

TH1: 3 nữ và 5 nam=> ta có \(C^3_5.C^5_{10}=2520\) cách

TH2: 4 nam và 4 nữ=> có : \(C^4_5.C^4_{10}=1050\)cách

TH3:5nam và 3 nữ: => có: \(C^5_5.C^3_{10}=120\)cách

=.> có tất cả 3690 cách

13 tháng 8 2019

26 tháng 11 2021

252.

26 tháng 11 2021

giải chi tiết như thế nào vậy bạn giúp mình với