Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số cách xếp ngẫu nhiên 12 học sinh thành hàng ngang là 12! cách.
Ta tìm số cách xếp thoả mãn:
Xếp hai bạn An và Bình cạnh nhau có 2! cách, gọi nhóm này là X;
Xếp 4 bạn lớp C còn lại cùng với X có 5! cách;
Lúc này có 4 vị trí (xen giữa các bạn lớp C còn lại và X) để xếp 3 bạn lớp B vào có A34A43cách;
Còn lại 3 vị trí để các bạn lớp A có thể xếp vào (1 vị trí xen giữa và ở hai đầu) có 3.3.3 cách.
Vậy có tất cả 2 ! 5 ! A 4 3 27 cách xếp thoả mãn.
Xác suất cần tính bằng 2 ! 5 ! A 4 3 27 12 ! = 1 3080
Chọn đáp án D.
Tìm số cách xếp ngẫu nhiên:
Chọn ra 6 trong 12 học sinh rồi xếp vào bàn dài có cách xếp;
6 học sinh còn lại xếp vào bàn tròn có (6-1)!=5! cách xếp.
Vậy có tất cả cách xếp ngẫu nhiên.
Ta tìm số cách xếp mà A, B cùng ngồi 1 bàn và ngồi cạnh nhau:
TH1: A, B ngồi cùng bàn dài và cạnh nhau có cách;
TH2: A, B ngồi cùng bàn tròn và cạnh nhau có cách.
Vậy có tất cả cách xếp thoả mãn.
Xác suất cần tính bằng
Chọn đáp án B.
*Chú ý số cách xếp n học sinh vào 1 bàn tròn bằng (n−1)! cách.
Chọn đáp án B.
Số phần tử của không gian mẫu n(Ω)=10!
Xếp 10 học sinh trên một hàng ngang sao cho 5 học sinh nam xen kẽ 5 học sinh nữ có 2 cách xếp.
Xét trong 2 cách xếp trên các khả năng Hoàng và Lan đứng liền kề nhau:
Xếp 8 học sinh trên một hàng ngang sao cho 4 học sinh nam xen kẽ 4 học sinh nữ có 2 cách xếp.
Với mỗi cách xếp 8 học sinh trên có 9 khoảng trống tạo ra. Với mỗi khoảng trống trên, xếp Hoàng và Lan vào khoảng trống này để được 5 học sinh nam xen kẽ 5 học sinh nữ có 1 cách xếp.
Suy số cách xếp 5 học sinh nam xen kẽ 5 học sinh nữ mà Hoàng và Lan đứng kề nhau là: 2.9
Vậy số phần tử của A là: n =2–2.9=18432.
Xác suất cần tìm là P(A)=n(A)/n(Ω)=18432/10!=8/1575.
+ Phương án B. Tính sai: P(A)=(2.5!5!-2.4!4!7)/10!=1/175.
+ Phương án C. Tính sai: P(A)=(5!5!-4!4!9)/10!=4/1575.
+ Phương án D. Tính sai: P(A)=(2.5!5!- 2.4!4!18)/10!=1/450.
Đáp án B
Chọn D
Xếp ngẫu nhiên 8 học sinh có 8! cách.
"Buộc" Hoàng, Lan, Nam thành một nhóm. Khi đó vì hai bên nhóm này bắt buộc là nữ nên ta xem nhóm ba người này là một nam. Vậy có ba nam và ba nữ.
Trường hợp 1: nam ngồi vị trí lẻ.
Xếp 3 nam vào 3 vị trí lẻ: 3!
Xếp 3 nữ vào 3 vị trí chẵn: 3!
Hoán vị hai học sinh nam trong nhóm: 2!
Suy ra số cách xếp trong trường hợp này là: 3!.3!.2!=72 cách
Trường hợp 2: nam ngồi vị trí chẵn
Tương tự có 72 cách
Vậy có 72 + 72 = 144 cách xếp tám học sinh không có hai học sinh cùng giới đứng cạnh nhau, đồng thời Lan đứng cạnh Hoàng và Nam.
Suy ra xác suất cần tìm là P = 144 8 ! = 1 280 .
Coi mỗi học sinh đứng vào 1 chỗ đồng thời coi 3 học sinh tên Trang chỉ đứng vào 1 chỗ và 2 học sinh tên Huy chỉ đứng vào 1 chỗ thì còn lại 32 chỗ đứng.
Số cách sắp xếp 32 chỗ này thành 1 hàng dọc là 32!, đồng thời ta có 3! cách xếp 3 học sinh tên Trang và 2! cách xếp 2 học sinh tên Huy nên số cách sắp xếp cho 3 học sinh tên Trang đứng cạnh nhau và 2 học sinh tên Huy đứng cạnh nhau là
Chọn D.
Chọn 2 bạn nữ trong 4 bạn thì có C 4 2 cách. Ta “buộc” hai bạn này vào nhau coi như một bạn nữ thông thường. Có 2 cách để “buộc” như thế ( vì có thể là ab hoặc ba). Lúc này nhóm học sinh gồm có 6 bạn nam và 3 bạn nữ ( trong đó có 1 bạn nữ “đặc biệt”). Ta xếp vị trí cho các bạn nam trước thì có 6! Cách. Giữa các bạn nam có 5 vị trí xen kẽ với 2 vị trí đầu hàng và cuối hàng bây giờ ta xếp 3 bạn nữ vào 3 trong 7 vị trí kia thì có A 7 3 cách. Vậy xác xuất cần tìm bằng
Chọn 2 bạn nữ trong 4 bạn thì có cách. Ta “buộc” hai bạn này vào nhau coi như một bạn nữ thông thường. Có 2 cách để “buộc” như thế ( vì có thể là ab hoặc ba). Lúc này nhóm học sinh gồm có 6 bạn nam và 3 bạn nữ ( trong đó có 1 bạn nữ “đặc biệt”). Ta xếp vị trí cho các bạn nam trước thì có 6! Cách. Giữa các bạn nam có 5 vị trí xen kẽ với 2 vị trí đầu hàng và cuối hàng bây giờ ta xếp 3 bạn nữ vào 3 trong 7 vị trí kia thì có cách. Vậy xác xuất cần tìm bằng
Coi 5 bạn của cả 12A và B vào một lớp 12X nào đó. Do số lượng ở đề nên ta có hai trường hợp
TH1. Các bạn 12C và 12X xen kẽ nhau. Có 5!.5!.2 = 28800 cách
TH2. Có hai bạn lớp 12A và 12B dính với nhau. Ta có như 12X chỉ có 4 bạn. rồi lại làm xen kẽ. Chọn 2 bạn dính nhau và hoán vị 2 bạn đó có 12 cách, 5 bạn 12C tạo ra 4 khe để 4 bạn của lớp 12X đứng vào nên có tất cả là 12.5!.4! = 34560
Đáp án cần chọn là A
Đáp án A.
Kí hiệu học sinh các lớp 12A, 12B,12C
lần lượt là A,B,C.
Ta sẽ xếp 5 học sinh của lớp 12C trước,
khi đó xét các trường hợp sau:
TH1: CxCxCxCxCx với x thể hiện là
ghế trống.
Khi đó, số cách xếp là 5!5! cách.
TH2: xCxCxCxCxC giống với TH1
⇒ có 5!5! cách xếp.
TH3: CxxCxCxCxC với xx là hai ghế
trống liền nhau.
Chọn 1 học sinh lớp 12A và 1 học sinh
lớp 12B vào 2 ghế trống ⇒ 2.3.2! cách
xếp. Ba ghế trống còn lại ta sẽ xếp 3 học
sinh còn lại của 2 lớp 12A-12B
⇒ 3! cách xếp.
Do đó, TH3 có 2.3.2!.3!.5! cách xếp.
Ba TH4. CxCxxCxCxC.
TH5. CxCxCxxCxC.
TH6. CxCxCxCxCxx tương tự TH3.
Vậy có tất cả 2.5!5!+4.2.3.2!.3!.5!=63360
cách xếp cho các học sinh.
Suy ra xác suất cần tính là P = 63360 10 ! = 11 630 .