K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2017

Đáp án C

Phương pháp giải: Sử dụng biến cố đối và các quy tắc đếm cơ bản

Lời giải:

Ta đi làm phần đối của giả thiết, tức là chọn 6 học sinh giỏi chỉ lấy từ một khối hoặc hai khối.

Chọn 6 học sinh giỏi trong 15 học sinh giỏi của 3 khối có C 15 6 = 5005 cách

Số cách chọn 6 học sinh giỏi bằng cách chỉ lấy từ 1 khối 12 là  C 6 6 = 1  

Chọn 6 học sinh giỏi trong 10 học sinh giỏi của 2 khối 12 và 11 có  C 10 6 = 210  cách, tuy nhiên phải trừ đi 1 trường hợp nếu 6 học sinh chỉ ở khối 12 => số cách chọn là 210 – 1 = 2019 cách

Chọn 6 học sinh giỏi trong 11 học sinh giỏi của 2 khối 12 và 10 có  C 11 6 = 462 cách, uy nhiên phải trừ đi 1 trường hợp nếu 6 học sinh chỉ ở khối 12  => số cách chọn là 462 – 1 = 461 cách.

Chọn 6 học sinh giỏi trong 9 học sinh giỏi của 2 khối 11 và 10 có  C 9 6 = 84 cách

Suy ra số cách chọn thỏa mãn yêu cầu bài toán là 5005 – 209 – 461 – 84 – 1 = 4250 cách

18 tháng 9 2017

Chọn đáp án B.

Số cách chọn 4 học sinh trong đội thanh niên xung kích là  C 15 4 = 1365

Số cách chọn 4 học sinh sao cho mỗi khối có ít nhất một học sinh là

Vậy xác suất chọn được 4 học sinh sao cho mỗi khối có ít nhất một học sinh là 

28 tháng 5 2018

Chọn C.

Chọn ngẫu nhiên 6 học sinh trong 15 học sinh có C 15 6  cách  ⇒ n Ω = C 16 5 .

Gọi X là biến cố “6 học sinh được chọn có đủ 3 khối” => biến cố đối X ¯  là “6 học sinh được chọn trong một khối hoặc hai khối”. Ta xét các trường hợp sau:

TH1. Chọn 6 học sinh từ một khối. Ta xét các trường hợp sau:

TH2. Chọn 6 học sinh từ hai khối, ta được

· 6 học sinh chọn từ khối 11 và 11 => có  C 11 6 - C 6 6  cách

· 6 học sinh chọn từ khối 11 và 12 => có  C 9 6  cách

· 6 học sinh chọn từ khối 12 và 10 =>  C 10 6 - C 6 6  cách.

 Vậy P = 1 - n X ¯ n Ω = 1 - 755 C 15 6 = 850 1001 .

27 tháng 7 2019

22 tháng 1 2018

Đáp án A

Chọn 4 học sinh có C 12 4  cách chọn.

Chọn 4 học sinh trong đó 4 học sinh được chọn có cả 3 khối có:  C 5 2 C 4 1 C 3 1 + C 5 1 C 4 2 C 3 1 + C 5 1 C 4 1 C 3 2 = 270

Xác suất để 4 hoc sinh đươc chon có cả 3 khối là P = 270 C 12 4 = 6 11  

Do đó xác suất sao cho 4 học sinh được chọn thuộc không quá 2 khối là 1 - 6 11 = 5 11 .

19 tháng 2 2019

Đáp án D

Phương pháp:

Cách giải: Số phần tử của không gian mẫu: 

Gọi A: “Mỗi khối có ít nhất 1 học sinh được chọn.”

Khi đó 

Xác suất: 

16 tháng 8 2017

Chọn đáp án B.

25 tháng 3 2018

16 tháng 11 2019

Chọn A