K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2018

b) \(\dfrac{5-\dfrac{5}{3}+\dfrac{5}{9}-\dfrac{5}{27}}{8-\dfrac{8}{3}+\dfrac{8}{9}-\dfrac{8}{27}}=\dfrac{5\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}{8\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}=\dfrac{5}{8}\)

Vì không có thời gian nên mình chỉ làm câu khó nhất thôi, tick mình nhéhaha

30 tháng 3 2018

cảm ơn bạn

30 tháng 4 2017

Ta có: \(K=\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{99^2}+\dfrac{1}{100^2}< \dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{99.100}\)

\(=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{3}-\dfrac{1}{100}< \dfrac{1}{3}\) (1)

\(K=\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}>\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{100.101}\)

\(=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{100}-\dfrac{1}{101}=\dfrac{1}{4}-\dfrac{1}{101}>\dfrac{1}{5}\) (2)

Từ (1), (2) \(\Rightarrow\dfrac{1}{5}< K< \dfrac{1}{3}\left(đpcm\right)\)

30 tháng 4 2017

thank you

A=\(\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}\right)\)+\(\left(\dfrac{1}{6}-\dfrac{1}{7}\right)\)+...+\(\left(\dfrac{1}{98}-\dfrac{1}{99}\right)\)

Biểu thức trong dấu ngoặc thứ nhất bằng\(\dfrac{13}{60}\) nên lớn hơn \(\dfrac{12}{60}\),tức là lớn hơn 0,2,còn các dấu ngoặc sau đều dương,do đó A>0,2.

Để chứng minh A < \(\dfrac{2}{5}\),ta viết:

A=\(\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{6}\right)-\left(\dfrac{1}{7}-\dfrac{1}{8}\right)-...-\left(\dfrac{1}{97}-\dfrac{1}{98}\right)-\dfrac{1}{99}\)

Biểu thức trong dấu ngoặc thứ nhất nhỏ hơn \(\dfrac{2}{5}\),còn các dấu ngoặc đều dương,do đó A <\(\dfrac{2}{5}\)

Chúc bạn học giỏi!ok

4 tháng 4 2017

Đặt : \(B=\dfrac{99}{1}+\dfrac{98}{2}+\dfrac{97}{3}+...+\dfrac{1}{99}\)

\(B=\left(\dfrac{99}{1}+1\right)+\left(\dfrac{98}{2}+1\right)+...+\left(\dfrac{1}{99}+1\right)-99\)

\(B=\dfrac{100}{1}+\dfrac{100}{2}+\dfrac{100}{3}+...+\dfrac{100}{99}-99\)

\(B=\dfrac{100}{2}+\dfrac{100}{3}+...+\dfrac{100}{99}+\left(100-99\right)\)

\(B=\dfrac{100}{2}+\dfrac{100}{3}+...+\dfrac{100}{99}+\dfrac{100}{100}\)

\(B=100\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)\)

Ta có : \(A=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}}{100\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)}=\dfrac{1}{100}\)

6 tháng 2 2021

help khocroi

6 tháng 2 2021

lớp mấy đây ạ