Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1;a,942^{60}-351^{37}\)
\(=\left(942^4\right)^{15}-\left(....1\right)\)
\(=\left(....6\right)^{15}-\left(...1\right)\)
\(=\left(...6\right)-\left(...1\right)=\left(....5\right)⋮5\)
\(b,99^5-98^4+97^3-96^2\)
\(=\left(...9\right)-\left(...6\right)+\left(...3\right)-\left(...6\right)\)
\(=\left(...6\right)-\left(...6\right)=\left(...0\right)⋮2;5\)
\(2;5n-n=4n⋮4\)
Cho a, b là các số nguyên thỏa mãn (a2 + b2) chia hết cho 3.
CMR a và b cùng chia hết cho 3.
Ta co : \(a^2+b^2⋮3\)\(\Leftrightarrow\hept{\begin{cases}a^2⋮3\\b^2⋮3\end{cases}}\)
De \(a^2⋮3;b^2⋮3\)thi \(a,b⋮3\)
\(\Rightarrow dpcm\)
Vì a2 là số chính phương =>a2 chia cho 3 dư 0 hoặc 1
Tương tự:b2 là số chính phương =>b2 chia cho 3 dư 0 hoặc 1
=>a2+b2 chia cho 3 dư 0,1 hoặc 2
Mà a2+b2 chia hết cho 3
=>a2+b2 chia cho 3 dư 0
=>a2 và b2 chia hết cho 3
Vì a2 chia hết cho 3,3 là số nguyên tố =>a chia hết cho 3
Tương tự:b2 chia hết cho 3,3 là số nguyên tố =>b chia hết cho 3
Vậy nếu (a2+b2) chia hết cho 3 thì a và b cùng chia hết cho 3
Quỳnh Anh ơi,a2+b2 chia hết cho 3 thì a2 và b2 cũng có thể chia không chia hết cho 3 mà,làm sao suy ra a2 và b2 phải chia hết cho 3 vậy ?
- Xét: Tổng B có 101 số hạng, nhóm 4 số vào 1 nhóm, ta đc 25 nhóm và thừa 1 số hạng
=> B = 1 + (3+32+33+34) + (35+36+37+38) +.....+ (397+398+399+3100)
=> B = 1 + 3(1+3+32+33) + 35(1+3+32+33) +.....+ 397(1+3+32+33)
=> B = 1 + 40.(3+35+...+397)
Có 1 chia 40 dư 1
40.(3+35+...+397)
chia hết cho 40
=> 1 + 40.(3+35+...+397) chia 40 dư 1
=> B chia 40 dư 1
A = 4 + 42 + 43 + ... + 424
= (4 + 42) + (43 + 44) + ... + (423 + 424)
= 4 (1 + 4) + 43 (1 + 4) + ... + 423 (1 + 4)
= 4 . 5 + 43 . 5 + ... + 423 . 5
= 20 + 20 . 42 + ... + 20 . 422
= 20 (1 + 42 + ... + 422) chia hết cho 20
ĐPCM