K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2021

\(\dfrac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\dfrac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2^n\) 

\(\Rightarrow\dfrac{4^5.4}{3^5.3}.\dfrac{6^5.6}{2^5.2}=2^n\) 

\(\Rightarrow\dfrac{4^5.4.6^5.6}{3^5.3.2^5.2}=2^n\) 

\(\Rightarrow\dfrac{\left(2.2\right)^5.2.2.\left(3.2\right)^5.3.2}{3^5.3.2^5.2}=2^n\) 

\(\Rightarrow\dfrac{2^5.2^5.2.2.3^5.2^5.3.2}{3^5.3.2^5.2}=2^n\) 

Rút gọn vế trái ta có :

\(2^5.2.2.^5=2^n\)

\(\Rightarrow2^{12}=2^n\) 

\(\Rightarrow n=12\) ( Thỏa mãn điều kiện \(n\in N\) ) 

Vậy n =12 

30 tháng 1 2022

=>\(\dfrac{4^5\left(1+1+1+1\right)}{3^5\left(1+1+1\right)}.\dfrac{6^5\left(1+1+1+1+1+1\right)}{2^5\left(1+1\right)}=2^n\)

=>\(\dfrac{4^5.4}{3^5.3}.\dfrac{6^5.6}{2^5.2}=2^n\) =>\(\dfrac{4^6}{3^6}.\dfrac{6^6}{2^6}=2^n\)

=>\(\left(\dfrac{4.6}{3.2}\right)^6=2^n\) =>\(4^6=2^n\) =>\(2^{12}=2^n\) =>n=12.

Sửa đề: 3^5+3^5+3^5; 2^x

=>\(2^x=\dfrac{4^5\cdot4}{3^5\cdot3}\cdot\dfrac{6^5\cdot6}{2^5\cdot2}\)

 

=>\(2^x=\left(\dfrac{4}{3}\right)^6\cdot\left(\dfrac{6}{2}\right)^6=4^6=2^{12}\)

=>x=12

25 tháng 10 2021

\(1\)/

\(a\)\(=\left(\dfrac{7}{5}-\dfrac{8}{7}\right)+\dfrac{17}{5}:0,6\)

\(=\dfrac{9}{35}+\dfrac{17}{3}\)

\(=\dfrac{622}{105}\)

\(b\)\(=\dfrac{11}{6}+\dfrac{-14}{15}\)

\(=\dfrac{9}{10}\)

\(c\)\(=\dfrac{7}{4}-\dfrac{2}{3}\)

\(=\dfrac{13}{12}\)

 

25 tháng 7 2023

Bài 3 :

\(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}\)

\(\dfrac{1}{2!}=\dfrac{1}{2.1}=1-\dfrac{1}{2}< 1\)

\(\dfrac{1}{3!}=\dfrac{1}{3.2.1}=1-\dfrac{1}{2}-\dfrac{1}{3}< 1\)

\(\dfrac{1}{4!}=\dfrac{1}{4.3.2.1}< \dfrac{1}{3!}< \dfrac{1}{2!}< 1\)

.....

\(\)\(\dfrac{1}{2023!}=\dfrac{1}{2023.2022....2.1}< \dfrac{1}{2022!}< ...< \dfrac{1}{2!}< 1\)

\(\Rightarrow\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}< 1\)

25 tháng 7 2023

Bạn xem lại đề 2, phần mẫu của N

4 tháng 5 2017

\(\dfrac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}\cdot\dfrac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2^n\)

<=>\(\dfrac{4.4^5}{3.3^5}\cdot\dfrac{6.6^5}{2.2^5}=2^n\)

<=>\(\dfrac{4^6.6^6}{3^6.2^6}\)=2n

<=>\(\dfrac{\left(4.6\right)^6}{\left(3.2\right)^6}=2^n\)

<=>46=2n

<=>(22)6=2n

<=>2n=212

<=>n=12

10 tháng 9 2023

\(a,\dfrac{5^{16}\cdot27^7}{125^5\cdot9^{11}}=\dfrac{5^{16}\cdot\left(3^3\right)^7}{\left(5^3\right)^5\cdot\left(3^2\right)^{11}}\)

\(=\dfrac{5^{16}\cdot3^{21}}{5^{15}\cdot3^{22}}=\dfrac{5}{3}\)

\(b,\left(-0,2\right)^2\cdot5-\dfrac{2^{13}\cdot27^3}{4^6\cdot9^5}\)

\(=0,04\cdot5-\dfrac{2^{13}\cdot\left(3^3\right)^3}{\left(2^2\right)^6\cdot\left(3^2\right)^5}\)

\(=0,2-\dfrac{2^{13}\cdot3^9}{2^{12}\cdot3^{10}}\)

\(=0,2-\dfrac{2}{3}\)

\(=-\dfrac{7}{15}\)

\(c,\dfrac{5^6+2^2\cdot25^3+2^3\cdot125^2}{26\cdot5^6}\)

\(=\dfrac{5^6+2^2\cdot\left(5^2\right)^3+2^3\cdot\left(5^3\right)^2}{5^6\cdot26}\)

\(=\dfrac{5^6+4\cdot5^6+8\cdot5^6}{5^6\cdot26}\)

\(=\dfrac{5^6\left(1+4+8\right)}{5^6\cdot26}\)

\(=\dfrac{13}{26}\)

\(=\dfrac{1}{2}\)

#\(Toru\)

10 tháng 9 2023

\(a,\dfrac{5^{16}.27^7}{125^5.9^{11}}=\dfrac{\left(5^2\right)^8.9^7.3^7}{25^5.5^5.9^{11}}\\ =\dfrac{25^8.9^7.\left(3^2\right)^3.3}{25^5.\left(5^2\right)^2.5.9^{11}}=\dfrac{25^8.9^7.9^3.3}{25^5.25^2.5.9^{11}}\\ =\dfrac{25^8.9^{10}.3}{25^7.5.9^{11}}=\dfrac{25^7.9^{10}.25.3}{25^7.9^{10}.5.9}\\ =\dfrac{25.3}{5.9}=\dfrac{5.5.3}{5.3.3}=\dfrac{5}{3}\)

1 tháng 4 2017

Câu hỏi của Lê Khánh Nhi - Toán lớp 7 - Học toán với OnlineMath sửa n thành x cho sửa cho nó thành lũy thừa luôn

a: \(=6+\dfrac{4}{5}-1-\dfrac{2}{3}-3-\dfrac{4}{5}\)

\(=2-\dfrac{2}{3}=\dfrac{4}{3}\)

b: \(=7+\dfrac{5}{9}-2-\dfrac{3}{4}-3-\dfrac{5}{9}=2-\dfrac{3}{4}=\dfrac{5}{4}\)

c: =6+7/7-1-3/4-2-5/7

=3+2/7-3/4

=84/28+8/28-21/28

=84/28-13/28

=71/28