Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)
Ba số trên là ba số tự nhiên liên tiếp nên chia hết cho 6 ( Ví dụ : 1.2.3= 6 chia hết cho 6 )
\(\Rightarrow n^3-n⋮6\)
n^3 - n
= n( n^2 - 1 )
Xét 2 trường hợp :
1 . n là số chẵn
ð n( n^2 – 1 ) chia hết cho 2
2 . n là số lẽ
=> n^2 – 1 là số chẵn
=> n( n^2 – 1 ) chia hết cho 2
Vậy n^3 – n chia hết cho 2
Có n^3 – n = n( n^2 – 1 ) = n( n + 1 )( n – 1 )
Vì n , n + 1 và n – 1 là 3 số tự nhiên liên tiếp nên chia hết cho 3
=> n^3 – n chia hết cho 3
Vì n^3 – n cùng chia hết cho cả 3 và 2
=> n^3 – n chia hết cho 6
a: \(\left(a+2\right)^2-\left(a-2\right)^2\)
\(=a^2+4a+4-a^2+4a-4=8a⋮4\)
b: \(\Leftrightarrow n^3-n^2+3n^2-3n+2⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{2;0;3;-1\right\}\)
a, Khai trển phương trình :
(5n+2)^2 - 4 = (25n^2 + 2*2*5n + 2^2) - 4 = 25n^2 + 20n + 4 - 4
= 25n^2 + 20n = 5n(5n + 4)
--> (52+2)^2 - 4 = 5n(5n + 4) hiển nhiên chia hết cho 5.
lưu ý : (a+b)^2 = a^2 + 2ab + b^2
Đề bài sai rồi bạn nhé.
Với \(n=3k\)thì \(A=9k^2-3k-2⋮̸3\)
Với \(n=3k+1\)thì \(A=\left(3k+1\right)^2-\left(3k+1\right)-2=9k^2+6k+1-3k-1-2\)
\(=9k^2+3k-2⋮̸3\)
Với \(n=3k+2\)thì \(A=\left(3k+2\right)^2-\left(3k+2\right)-2=9k^2+12k+4-3k-2-2\)
\(=9k^2+9k=9k\left(k+1\right)\)chia hết cho \(81\)suy ra \(k⋮9\Rightarrow k=9l\)hoặc \(k+1⋮9\Rightarrow k=9l-1\).
Vậy \(n=27l+2\)hoặc \(n=27l-1\)với \(l\inℤ\)thì \(A\)chia hết cho \(81\).