K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2019

\(6^{2n}=36^n;36\equiv2\left(mod17\right)\Rightarrow6^{2n}\equiv2^n\left(mod17\right)\)

\(19\equiv2\left(mod17\right)\Rightarrow19^n\equiv2^n\left(mod17\right)\)

\(2^{n+1}\equiv2^{n+1}\left(mod17\right)\)

\(\Rightarrow6^{2n}+19^n-2^{n+1}\equiv2^n+2^n-2^{n+1}\equiv2^{n+1}-2^{n+1}\equiv0\left(mod17\right)\)

\(\Rightarrow6^{2n}+19^n-2^{n+1}⋮17\forall n\in N\)

27 tháng 6 2019

mé, ghê vãi

31 tháng 3 2016

Ta có : A = n2(n2 +2n + 1) + ( n2 + 2n + 1) = (n2+1).(n+1)2
Vì n2 + 1 không phải là số chính phương nên A không phải là số chính phương.

Bài 2: 

a: \(\left(2n-1\right)^3-\left(2n-1\right)\)

\(=\left(2n-1\right)\cdot\left[\left(2n-1\right)^2-1\right]\)

\(=\left(2n-1\right)\cdot\left(2n-1-1\right)\left(2n-1+1\right)\)

\(=2n\left(2n-2\right)\left(2n-1\right)\)

\(=4n\left(n-1\right)\left(2n-1\right)\)

Vì n;n-1 là hai số nguyên liên tiếp

nên n(n-1) chia hết cho 2

=>4n(n-1) chia hết cho 8

=>4n(n-1)(2n-1) chia hết cho 8

b: \(n^3-19n=n^3-n-18n\)

\(=n\left(n-1\right)\left(n+1\right)-18n\)

Vì n;n-1;n+1 là ba số nguyên liên tiếp

nên \(n\left(n-1\right)\left(n+1\right)⋮3!=6\)

=>n(n-1)(n+1)-18n chia hết cho 6

6 tháng 7 2016

\(n^2\left(n+1\right)+2n\left(n+1\right)=\left(n+1\right)\left(n^2+2n\right)=\left(n+1\right)n\left(n+2\right)=n\left(n+1\right)\left(n+2\right)\)

Vì n(n+1)(n+2) là tích 3 số  nguyên liên tiếp nên chia hết cho 2 và 3

Mà (2;3)=1

=>n(n+1)(n+2) chia hết cho 6

=>đpcm

=(n2+2n)(n+1)

=n(n+1)(n+2) chia hết cho 6 vì là 3 số nguyên liên tiếp

17 tháng 3 2017

Hằng đẳng thức: a^n - b^n = (a-b)[a^(n-1).b + a(n-2).b² +..+ b^(n-1)] = (a-b).p 

* 5^2n - 2^n = 25^n - 2^n = (25-2)p = 23p => 5.5^2n - 5.2^n = 5.23.p 
=> 5^(2n+1) - 5.2^n = 5.23p chia hết cho 23 

* 2^(n+4) + 2^(n+1) = 2^n.2^4 + 2^n.2 = 2^n(2^4 + 2) = 18.2^n = 23.2^n - 5.2^n 

Vậy: 5^(2n+1) + 2^(n+4) + 2^(n+1) = 5^(2n+1) - 5.2^n + 23.2^n chia hết cho 23 .

3 tháng 6 2017

undefined

5 tháng 6 2017

2

\(\dfrac{n^3-8n^2+2n}{n^2+1}=\dfrac{n\left(n^2+1\right)-8\left(n^2+1\right)+n+8}{n^2+1}\)

để n3-8n2+2n chia hết cho n2+1 thì (n+8) phải chia hết cho n2+1

với n=0=> \(\dfrac{n+8}{n^2+1}=8\left(tm\right)\)

với n=1 => \(\dfrac{n+8}{n^2+1}=\dfrac{9}{2}->loai\)

với n=2=> \(\dfrac{n+8}{n^2+1}=2->tm\)

với n=3 => \(\dfrac{n+8}{n^2+1}=\dfrac{11}{10}\left(loai\right)\)

với \(n\ge4\) => \(n+8< n^2+1\)

Vậy n=0 và n=2