Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 4 số nguyên dương liên tiếp là n, n+1, n+2, n+3.
Đặt S=n(n+1)(n+2)(n+3)
=n(n+3)(n+1)(n+2)=(n^2+3n)(n^2+3n+2)=(n^2+3n)^2 + 2(n^2+3n) +1 -1
=(n^2 +3n +1)^2 - 1
Sử dụng tính chất kẹp giữa của số chính phương:
(n^2 + 3n)^2 < (n^2 + 3n + 1)^2 - 1 < (n^2 + 3n +1)
Trên đây là 2 số chính phương liên tiếp nên S không là số chính phương.
a,Giả sử tích 2 số nguyên dương là 1 số chính phương
Gọi 2 số đó là \(x;x+1\left(x\inℕ^∗\right)\)
ta có:\(x\left(x+1\right)=a^2\left(a\inℤ|a\ne0\right)\)
Mà x và x+1 nguyên tố cùng nhau
\(\Rightarrow\hept{\begin{cases}x=b^2\\x+1=c^2\Rightarrow b^2+1=c^2\end{cases}}\)
\(\Rightarrow1=c^2-b^2=\left(c-b\right)\left(c+b\right)\Rightarrow c-b=c+b\Rightarrow b=0\Rightarrow x=0\)(Trái với giả thuyết)
Vậy điều giả sử là sai,do đó tích 2 số nguyên dương ko là số chính phương(DPCM)
Giả sử có số thỏa mãn đề bài
Gọi 3 số đó là\(x-1;x;x+1\left(x\inℕ|x>1\right)\)
Ta có:\(\left(x-1\right)x\left(x+1\right)=a^2\)(điều kiện như câu a)
\(\Rightarrow\left(x-1\right)\left(x+1\right)x=a^2\Rightarrow\left(x^2-1\right)x=a^2\)
Gọi d là ước chung của x và\(x^2-1\)
\(\Rightarrow\hept{\begin{cases}x^2-1⋮d\\x⋮d\Rightarrow x^2⋮d\end{cases}}\)
\(\Rightarrow x^2-\left(x^2-1\right)=1⋮d\Rightarrow d=1\)
Do đó x và\(x^2-1\)nguyên tố cùng nhau
\(\Rightarrow\hept{\begin{cases}x=b^2\\x^2-1=\left(b^2\right)^2-1=c^2\end{cases}}\)
\(\Rightarrow\left(b^2\right)^2-1=c^2\Rightarrow\left(b^2\right)^2-c^2=1\Rightarrow\left(b^2-c\right)\left(b^2+c\right)=1\Rightarrow b^2-c=b^2+c\Leftrightarrow c=0\)
\(\Rightarrow\left(b^2\right)^2-1=0\Rightarrow\left(b^2\right)^2=1\Rightarrow b^2=1\Rightarrow x=1\)(Trái với giả thuyết)
Vậy điền giả sử là sai,do đó ko có số nguyên dương thỏa mãn đề bài(ĐPCM)
2. Gọi 4 số TN liên tiếp lần lượt là :a ; a + 1 ; a + 2 ; a + 3 ; a + 4 ( a thuộc N)
Ta có : a + a + 1 + a + 2 + a + 3 + a + 4 = a + a + a + a + 1 + 2 +3 + 4 = 4a + 6
Vì 4a chia hết cho 2 ; 6 chia hết cho 2 nên 4a + 6 chia hết cho 2
Vì 4a chia hết cho 4 ; 6 không chia hết cho 4 nên 4a + 6 không chia hết cho 4
Do đó tổng của 4 số TN liên tiếp chia hết cho 2 nhưng không chia hết cho 22
Do đó tổng của 4 số TN liên tiếp không là số chính Phương
Học tốt 🐱
2.
Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x\(\in\) N)
Ta có : x (x+1) (x+2 ) (x+3 ) +1
=( x2 + 3x ) (x2 + 2x + x +2 ) +1
= ( x2 + 3x ) (x2 +3x + 2 ) +1 (*)
Đặt t = x2 + 3x thì (* ) = t ( t+2 ) + 1= t2 + 2t +1 = (t+1)2 = (x2 + 3x + 1 )2
=> x (x+1) (x+2 ) (x+3 ) +1 là số chính phương
hay tích 4 số tự nhiên liên tiếp cộng 1 là số chính phương
Gọi tích 4 số nguyên dương liên tiếp đó là A=(a-1)a(a+1)(a+2)
A = [(a-1)(a+2)][a(a+1)] = (a^2+2a-a-2)(a^2+a) = (a^2+a-2)(a^2+a)
Đặt a^2+a-1=x; thế thì A=(x-1)(x+1)=x^2-1 không phải là số chính phương