K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2019

Ta có

\(\sqrt[3]{20+14\sqrt{2}}-\sqrt[3]{14\sqrt{2}-20}\)

\(=\sqrt[3]{\left(\sqrt{2}\right)^3+3\cdot2\cdot2+3\cdot\sqrt{2}\cdot2^2+2^3}-\sqrt[3]{\left(\sqrt{2}\right)^3-3\cdot2\cdot2-3\cdot\sqrt{2}\cdot2^2-2^3}\)

\(=\sqrt[3]{\left(\sqrt{2}+2\right)^3}-\sqrt[3]{\left(\sqrt{2}-2\right)^3}\)

\(=\sqrt{2}+2-\sqrt{2}+2=4\)

3 tháng 8 2017

b. ĐK \(\hept{\begin{cases}x-2\ge0\\y+2014\ge0\\z-2015\ge o\end{cases}\Rightarrow\hept{\begin{cases}x\ge2\\y\ge-2014\\z\ge2015\end{cases}}}\)

Ta có \(\sqrt{x-2}+\sqrt{y+2014}+\sqrt{z-2015}=\frac{1}{2}\left(x+y+z\right)\)

Đặt  \(\hept{\begin{cases}\sqrt{x-2}=a\ge0\\\sqrt{y+2014}=b\ge0\\\sqrt{z-2015}=c\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x-2=a^2\\y+2014=b^2\\z-2015=c^2\end{cases}\Rightarrow x+y+z}=a^2+b^2+c^2+3\)

Pt \(\Leftrightarrow a+b+c=\frac{1}{2}\left(a^2+b^2+c^2+3\right)\Leftrightarrow a^2+b^2+c^2+3=2a+2b+2c\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\Leftrightarrow\hept{\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}}\)\(\Leftrightarrow a=b=c=1\)

\(\Rightarrow\hept{\begin{cases}x-2=1\\y+2014=1\\z-2015=1\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=-2013\\z=2016\end{cases}\left(tm\right)}}\)

Vậy \(x=3;y=-2013;z=2016\)

NV
2 tháng 8 2021

Đặt \(x=\sqrt[3]{20+14\sqrt[]{2}}+\sqrt[3]{20-14\sqrt[]{2}}\)

\(\Rightarrow x^3=40+3\sqrt[3]{\left(20+14\sqrt[]{2}\right)\left(20-14\sqrt[]{2}\right)}.\left(\sqrt[3]{20+14\sqrt[]{2}}+\sqrt[3]{20-14\sqrt[]{2}}\right)\)

\(\Rightarrow x^3=40+6x\)

\(\Rightarrow x^3-6x-40=0\)

\(\Rightarrow\left(x-4\right)\left(x^2+4x+10\right)=0\)

\(\Rightarrow x=4\)

Vậy \(\sqrt[3]{20+14\sqrt[]{2}}+\sqrt[3]{20-14\sqrt[]{2}}=4\)

2 tháng 8 2021

em cảm ơn ạ

4 tháng 10 2016

A = \(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)

=> A3 = 40 + 6A

<=> A = 4

a) Ta có: \(A^3=\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)^3\)

\(=2+\sqrt{5}+2-\sqrt{5}+3\cdot\sqrt[3]{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)\)

\(=4-3\cdot A\)

\(\Leftrightarrow A^3+3A-4=0\)

\(\Leftrightarrow A^3-A+4A-4=0\)

\(\Leftrightarrow A\left(A-1\right)\left(A+1\right)+4\left(A-1\right)=0\)

\(\Leftrightarrow\left(A-1\right)\left(A^2+A+4\right)=0\)

\(\Leftrightarrow A=1\)

11 tháng 8 2020

Câu b, c tương tự câu a. Mình làm câu a coi như tượng trưng nha !!!!!!

a) Đặt: \(A=\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)

<=> \(A^3=2+\sqrt{5}+2-\sqrt{5}+3\sqrt[3]{\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}.\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)\)

<=> \(A^3=4+3\sqrt[3]{4-5}.A\)

<=> \(A^3=4-3A\)

<=> \(A^3+3A-4=0\)

<=> \(\left(A-1\right)\left(A^2+A+4\right)=0\)

Có:     \(A^2+A+4=\left(A+\frac{1}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}>0\)

=>    \(A-1=0\)

<=> \(A=1\)

=> \(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}=1\)

VẬY TA CÓ ĐPCM