Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b. ĐK \(\hept{\begin{cases}x-2\ge0\\y+2014\ge0\\z-2015\ge o\end{cases}\Rightarrow\hept{\begin{cases}x\ge2\\y\ge-2014\\z\ge2015\end{cases}}}\)
Ta có \(\sqrt{x-2}+\sqrt{y+2014}+\sqrt{z-2015}=\frac{1}{2}\left(x+y+z\right)\)
Đặt \(\hept{\begin{cases}\sqrt{x-2}=a\ge0\\\sqrt{y+2014}=b\ge0\\\sqrt{z-2015}=c\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x-2=a^2\\y+2014=b^2\\z-2015=c^2\end{cases}\Rightarrow x+y+z}=a^2+b^2+c^2+3\)
Pt \(\Leftrightarrow a+b+c=\frac{1}{2}\left(a^2+b^2+c^2+3\right)\Leftrightarrow a^2+b^2+c^2+3=2a+2b+2c\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\Leftrightarrow\hept{\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}}\)\(\Leftrightarrow a=b=c=1\)
\(\Rightarrow\hept{\begin{cases}x-2=1\\y+2014=1\\z-2015=1\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=-2013\\z=2016\end{cases}\left(tm\right)}}\)
Vậy \(x=3;y=-2013;z=2016\)
a) Ta có: \(A^3=\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)^3\)
\(=2+\sqrt{5}+2-\sqrt{5}+3\cdot\sqrt[3]{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)\)
\(=4-3\cdot A\)
\(\Leftrightarrow A^3+3A-4=0\)
\(\Leftrightarrow A^3-A+4A-4=0\)
\(\Leftrightarrow A\left(A-1\right)\left(A+1\right)+4\left(A-1\right)=0\)
\(\Leftrightarrow\left(A-1\right)\left(A^2+A+4\right)=0\)
\(\Leftrightarrow A=1\)
`a)(\sqrt{14}-3\sqrt{2})^2+6\sqrt{28}`
`=14-12\sqrt{7}+18+12\sqrt{7}=32`
`b)2\sqrt{20}-3\sqrt{20}+\sqrt{125}`
`=4\sqrt{5}-6\sqrt{5}+5\sqrt{5}`
`=3\sqrt{5}`.
a) \(\left(\sqrt{14}-3\sqrt{2}\right)^2-6\sqrt{28}\)
\(=\left(\sqrt{14}\right)^2-2\cdot\sqrt{14}\cdot3\sqrt{2}+\left(3\sqrt{2}\right)^2+6\sqrt{28}\)
\(=14-6\sqrt{28}+18+6\sqrt{28}\)
\(=14+18\)
\(=32\)
b) \(2\sqrt{20}-3\sqrt{20}+\sqrt{125}\)
\(=2\cdot2\sqrt{5}-3\cdot2\sqrt{5}+5\sqrt{5}\)
\(=4\sqrt{5}-6\sqrt{5}+5\sqrt{5}\)
\(=3\sqrt{5}\)
Ta có
\(\sqrt[3]{20+14\sqrt{2}}-\sqrt[3]{14\sqrt{2}-20}\)
\(=\sqrt[3]{\left(\sqrt{2}\right)^3+3\cdot2\cdot2+3\cdot\sqrt{2}\cdot2^2+2^3}-\sqrt[3]{\left(\sqrt{2}\right)^3-3\cdot2\cdot2-3\cdot\sqrt{2}\cdot2^2-2^3}\)
\(=\sqrt[3]{\left(\sqrt{2}+2\right)^3}-\sqrt[3]{\left(\sqrt{2}-2\right)^3}\)
\(=\sqrt{2}+2-\sqrt{2}+2=4\)
a, c.Câu hỏi của Nữ hoàng sến súa là ta - Toán lớp 9 - Học toán với OnlineMath
Ta có : \(x=\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)
= \(\sqrt[3]{\left(2+\sqrt{2}\right)^3}+\sqrt[3]{\left(2-\sqrt{2}\right)^3}\)
= \(\left(2+\sqrt{2}\right)+\left(2-\sqrt{2}\right)\)
= 4
Thay x=4 vào biểu thức \(M=x^3-6x=4^{^{ }3}-6.4=40\)