Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯCLN(2n+1;3n+2)
Ta có 2n+1 chia hết cho d nên 3(2n+1) cũng chia hết cho d hay 6n+3 cũng chia hết cho d
3n+2 chia hết cho d nên 2(3n+2) cũng chia hết cho d hay 6n+4 cũng chia hết cho d
Ta suy ra [(6n+4)-(6n+3)] chia hết cho d
(6n+4-6n-3) chia hết cho d
1 chia hết cho d
nên d=1
Vì ƯCLN(2n+1;3n+2)=1 nên 2n+1 phần 3n+2 là phân số tối giản (tick nhé )
Gọi a là ước chung lớn nhất của \(\frac{2n+1}{3n+2}\)
suy ra 2n+1 chia hết cho a
3n+2 chia hết cho a
nên 3.(2n+1) chia hết cho a
2(3n+2) chia hết cho a
=> 6n+3 chia hết cho a
6n+4 chia hết cho a
vậy (6n+4)-(6n+3) chia hết cho a
1 chia hết cho a
vậy a=1
=> phân số \(\frac{2n+1}{3n+2}\) là phân số tối giản.
gọi a là UCLN của tử và mẫu
suy ra 2n+1 chia hết cho a suy ra 6n+3 chia hết cho a
ta có 3n+2 chia hết cho a suy ra 6n +4 chia hết cho a
từ hai điều trên suy ra
(6n+4)-(6n+3) chia hết cho a
suy ra 1 chia hết cho a
suy ra a=1
suy ra đpcm
Gọi ƯCLN (2n+1,3n+2)=d
\(\Rightarrow2n+1⋮d\)
\(3n+2⋮d\)
\(\Rightarrow3n+2-2n+1⋮d\)
\(2\left(3n+2\right)-3\left(2n+1\right)⋮d\)
\(6n+4-6n+3⋮d\)
\(\Rightarrow1⋮d\Leftrightarrow d=1\)
Vậy ƯCLN \(\left(2n+1,3n+2\right)=1\Leftrightarrow\dfrac{2n+1}{3n+2}\) là p/s tối giản \(\left(dpcm\right)\)
Giả sử phân số \(\frac{12n+1}{30n+2}\) không tối giản
Đặt d là ƯCLN(12n+2;30n+2) nghĩa là nếu d=ƯCLN(12n+1;30n+2) thì d>1 (*)
Ta có:(12n+1) chia hết cho d;(30n+2) chia hết cho d
=>5.(12n+1)-2.(30n+2) chia hết cho d
=>60n+5-60n-4 chia hết cho d
=>1 chia hết cho d ,mâu thuẫn với (*)
do đó phân số \(\frac{12n+1}{30n+2}\) tối giản
Ta có: \(\frac{12n+1}{30n+2}\Rightarrow\frac{12+1}{30+2}=\frac{13}{32}\) mà \(\frac{13}{32}\) là phân số tối giản
1) Trướt hết mình xin ký hiệu lại:
a/b tối giản <=> (a;b)=1 tức là ước chung lớn nhất của a, b là 1
2) Ta sẽ chứng minh:
Nếu (a;b)=1 thì (b;a-b)=1 (*)
Bằng phản chứng: giả sử rằng (b;a-b)=k (k>1) khi đó ta có thể viết
b = k.u (u nguyên) (**)
a-b = k.v (v nguyên) (***)
Từ (**)(***) suy ra a = k(u+v) và do đó (a;b) = (k(u+v); ku) = k >1 là trái giả thiết.
Vậy (*) đã được chứng minh.
3) a/b tối giản => a/b -1 = (a-b)/b tối giản (theo (*))
bằng quy nạp sẽ chứng minh được a/b - n tối giản. (đpcm)
Gọi ƯCLN(n+1;2n+3)=d
=>n+1 chia hết cho d=>2(n+1) chia hết cho d hay 2n+2 chia hết cho d
=>2n+3 chia hết cho d
=>2n+3-(2n+2) chia hết cho d
=>1 chia hết cho d hay d=1
Do đó, ƯCLN(n+1;2n+3)=1
Vậy (n+1)/(2n+3) (nEN)là p/s tối giản
Gọi \(d=ƯCLN\left(n+1;2n+3\right)\)
Do đó \(d\inƯC\left(n+1;2n+3\right)\)
\(\Rightarrow n+1⋮d;2n+3⋮d\)
\(\Rightarrow2n+2⋮d;2n+3⋮d\)
\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow\) n+1 và 2n+3 là hai số nguyên tố cùng nhau.
Vậy phân số \(\dfrac{n+1}{2n+3}\) tối giản với \(\forall n\in N\).
\(A=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=1+\frac{4}{n-3}\)
Để A là phân số tối giản <=> \(\frac{4}{n-3}\) là phân số tối giản
Để A là phân số tối giản thì: n + 1 chia hết cho n - 3
=> n -3 + 4 chia hết cho n - 3
mà n - 3 chia hết cho n - 3
=> 4 chia hết cho n - 3 hay n - 3 thuộc Ư(4)
=> n - 3 thuộc { -1 ; 1 ; 2 ; -2 ; 4 ; - 4 }
=> n thuộc { 2 ; 4 ; 5 ; 1 ; 7 ; - 1 }
Gọi ước chung lớn nhất của 15n + 1 và 30n + 1 là d (d thuộc N*)
=> 15n + 1 chia hết cho d
30n + 1 chia hết cho d
=> 2(15n + 1) chia hết cho d
1(30n + 1) chia hết cho d
=> 30n + 2 chia hết cho d
30n + 1 chia hết cho d
=>(30n + 2) - (30n + 1) chia hết cho d
=> 1 chia hết cho d
Do d thuộc N*
=> d=1
=>Ước chung lớn nhất của 15n + 1 và 30n + 1 là 1
=> 15n +1 và 30n + 1 là 2 số nguyên tố cùng nhau
=>15n + 1/30n + 1 là phân số tối giản với n thuộc N (điều phải chứng minh)