K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2017

Ta có : a + b + c = 0 => a = -(b + c)

Nên a3 + b3 + c3 - 3abc

= [-(b + c)]3 + b+ c- 3abc

= -(b3 + 3b2c + 3bc2 + c3) + b+ c​- 3abc

= -b3 - 3b2c - 3bc2 - c3 + b+ c​- 3abc

= -3bc(a + b + c) 

Mà a + b + c = 0 

=> 3bc(a + b + c) = 0

Vậy a3 + b3 + c3 - 3abc = 0 (đpcm)

30 tháng 8 2015

Xét hiệu:

a3+b3+c3-3abc=a3+3a2b+3ab2+b3+c3-3a2b-3ab2-3abc

=(a+b)3+c3-3ab.(a+b+c)

=(a+b+c)[(a+b)2-(a+b).c+c2]-3ab.(a+b+c)

=(a+b+c)(a2+2ab+b2-ac-bc+c2)-3ab.(a+b+c)

=(a+b+c)(a2+2ab+b2-ac-bc+c2-3ab)

=(a+b+c)(a2-ab+b2-ac-bc+c2)

ta lại có:

2.(a2-ab+b2-ac-bc+c2)

=2a2-2ab+2b2-2ac-2bc+2c2

=a2-2ab+b2+b2-2bc+c2+a2-2ac+c2

=(a-b)2+(b-c)2+(a-c)2\(\ge\)0 với mọi a,b,c

=>2.(a2-ab+b2-ac-bc+c2)\(\ge\)0

<=>a2-ab+b2-ac-bc+c2\(\ge\)0

ta có thêm a,b,c\(\ge\)0

=>(a+b+c)(a2-ab+b2-ac-bc+c2)\(\ge\)0 với mọi a,b,c

=>a3+b3+c3-3abc\(\ge\)0

<=>a3+b3+c3\(\ge\)3abc

 

30 tháng 8 2015

Lắm bạn hỏi câu này quá mình giải 1 câu sau các bạn vào câu hỏi tương tự nha

Xét Hiệu : a^3 + b^3 + c^3 - 3abc

= ( a + b )^3 - 3ab(a+b) - 3abc + c^3 

=  ( a + b + c )^3 - 3 ( a+  b ).c ( a + b + c ) - 3ab ( a + b+  c )

= ( a + b + c )^3 - 3(a+b+c)( ac+ bc + ab )

= ( a+  b+  c )[ ( a + b + c )^2 - 3ab - 3ac - 3bc ) 

= ( a+  b + c )( a^2 + b^2 + c^2 + 2ab + 2bc + 2ca - 3ac - 3bc - 3ab )

=(a+  b+ c )( a^2 + b^2 + c^2 - ab - bc - ac )

= 2 ( a + b +c )(2a^2 + 2b^2 + 2c^2 - 2ab- 2bc- 2ac ) 

= 2 (a+b+c) [ a^2 - 2ab + b^2 + c^2 - 2bc + b^2 + a^2 - 2ac + c^2 )] 

= 2 ( a+  b + c )[ ( a - b)^2 + ( c-  b)^2 + ( c -a  )^2 ]  >=0 vì :

a ; b; c >0  => a+  b+ c >= 0 

( a- b)^2 >=0 

( b- c )^2 >=0 

( c-a )^2 >=0 

=> ( a -b )^2 + ( b- c)^2 + ( c- a)^2 >=0 

=> a^3 +b^3 + c^3 - 3abc >=0 

=> a^3 + b^3 + c^3 >= 3abc => ĐPCM 

2 tháng 8 2017

\(a+b+c=0\Rightarrow a+b=-c\)

\(\Rightarrow a^3+b^3+3a^2b+3ab^2=-c^3\)

\(\Rightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)

mà a+b= -c (cmt )

nên \(a^3+b^3+c^3=3abc\left(đpcm\right)\)

2 tháng 8 2017

\(a+b+c=0\Rightarrow c=-a-b\)

\(\Rightarrow a^3+b^3+c^3=a^3+b^3+\left(-a-b\right)^3=a^3+b^3-a^3-3a^2b-3ab^2-b^3\)

\(=-3a^2b-3ab^2=3ab\left(-a-b\right)=3abc\) (đpcm)

9 tháng 8 2015

a) 

\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)-3abc+c^3\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[a^2+b^2+c^2-ab-bc-ca\right]\)

\(=0\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

b/

\(a+b+c=0\Rightarrow c=-\left(a+b\right)\Rightarrow c^2=\left(a+b\right)^2\)

\(\Leftrightarrow c^2=a^2+b^2+2ab\)\(\Leftrightarrow a^2+b^2+ab=c^2-ab\)

\(2x^4=\left(a^2+b^2+ab\right)^2+\left(c^2-ab\right)^2\)

\(=a^4+b^4+a^2b^2+2a^2b^2+2a^3b+2ab^3+c^4-2abc^2+a^2b^2\)

\(=a^4+b^4+c^4+\left(4a^2b^2+2a^3b+2ab^3-2abc^2\right)\)

\(=a^4+b^4+c^4+2ab\left(2ab+a^2+b^2-c^2\right)\)

\(=a^4+b^4+c^4+0\)

\(=a^4+b^4+c^4\)

5 tháng 11 2021

Theo bài ra, ta có: a+b+c
Suy ra: 3(a+b+c)-3abc=0
Suy ra: -3abc=0
Tương đương: -3*(b+c)*(a+c)*(a+b)=0
Tương đương: -3* a^2+b^2+c^2=0
Tương đương: -3*0=0
Suy ra: nếu a+b+c=0 thì a3+b3+c3-3abc=0(đpcm)


 

1 tháng 11 2021

Sai rồi bạn ơi

 

29 tháng 3 2018

\(a+b+c=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)=0

\(\Leftrightarrow\)\(a^3+ab^2+ac^2-a^2b-a^2c-abc+a^2b+b^3+bc^2-ab^2-\)

\(abc-b^2c+ca^2+bc^2+c^3-abc-ac^2-bc^2\)=0

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\Leftrightarrow a^3+b^3-3abc=-c^3\)

29 tháng 3 2018

bạn thử tra mạng đi

8 tháng 7 2016

Ta có: a+b+c=0 \(\Rightarrow a+b=-c\)

\(\Rightarrow\left(a+b\right)^3=-c^3\)

\(\Rightarrow a^3+3a^2b+3ab^2+b^3=-c^3\)

\(\Rightarrow a^3+b^3+c^3=-3a^2b-3ab^2\)

\(\Rightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)(*)

Thay \(a+b=-c\) vào (*), có:

\(a^3+b^3+c^3=3abc\left(đpcm\right)\)

27 tháng 8 2018

\(a^3+b^3+c^3=3abc\) 

<=>   \(a^3+b^3+c^3-3abc=0\)

<=>    \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

<=>    \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)

  Xét:     \(a^2+b^2+c^2-ab-bc-ca=0\)

<=>    \(2a^{ 2}+2b^2+2c^2-2ab-2bc-2ca=0\)

<=>     \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

<=>    \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\) <=>  \(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)<=>   \(a=b=c\)

=>  đpcm

20 tháng 12 2018

Theo đề bài : a3 + b3 +c3 = 3abc và a;b;c >0 nên : a = b = c (cái này mk k bịa ra nah ) có quy tắc nha !

Vậy biểu thức  trên sẽ bằng 1 + 1 +1 = 3

Chúc bn hc tốt :3