Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)√x−1=2(x≥1)
\(x-1=4
\)
x=5
b)
\(\sqrt{3-x}=4\) (x≤3)
\(\left(\sqrt{3-x}\right)^2=4^2\)
x-3=16
x=19
a: Ta có: \(\sqrt{x-1}=2\)
\(\Leftrightarrow x-1=4\)
hay x=5
b: Ta có: \(\sqrt{3-x}=4\)
\(\Leftrightarrow3-x=16\)
hay x=-13
c: Ta có: \(2\cdot\sqrt{3-2x}=\dfrac{1}{2}\)
\(\Leftrightarrow\sqrt{3-2x}=\dfrac{1}{4}\)
\(\Leftrightarrow-2x+3=\dfrac{1}{16}\)
\(\Leftrightarrow-2x=-\dfrac{47}{16}\)
hay \(x=\dfrac{47}{32}\)
d: Ta có: \(4-\sqrt{x-1}=\dfrac{1}{2}\)
\(\Leftrightarrow\sqrt{x-1}=\dfrac{7}{2}\)
\(\Leftrightarrow x-1=\dfrac{49}{4}\)
hay \(x=\dfrac{53}{4}\)
e: Ta có: \(\sqrt{x-1}-3=1\)
\(\Leftrightarrow\sqrt{x-1}=4\)
\(\Leftrightarrow x-1=16\)
hay x=17
f:Ta có: \(\dfrac{1}{2}-2\cdot\sqrt{x+2}=\dfrac{1}{4}\)
\(\Leftrightarrow2\cdot\sqrt{x+2}=\dfrac{1}{4}\)
\(\Leftrightarrow\sqrt{x+2}=\dfrac{1}{8}\)
\(\Leftrightarrow x+2=\dfrac{1}{64}\)
hay \(x=-\dfrac{127}{64}\)
Lời giải:
$(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0$
$\Leftrightarrow 3x^2-2x(a+b+c)+(ab+bc+ac)=0$
Ta thấy:
$\Delta'=(a+b+c)^2-3(ab+bc+ac)=a^2+b^2+c^2-ab-bc-ac$
$=\frac{(a-b)^2+(b-c)^2+(c-a)^2}{2}\geq 0$ với mọi $a,b,c\in\mathbb{R}$
$\Rightarrow$ PT đã cho luôn có nghiệm với mọi $a,b,c$
\(3\sqrt{9a^6}-6a^3=3\left|3a^3\right|-6a^3\)
Xét \(a\ge0\Rightarrow\) biểu thức \(=9a^3-6a^3=3a^3\)
Xét \(a< 0\Rightarrow\) biểu thức \(=-9a^3-6a^3=-15a^3\)
\(\sqrt{\left(x-1\right)^2}+\sqrt{\left(1-3x\right)^2}=\left|x-1\right|+\left|1-3x\right|\)
\(=1-x+3x-1\left(\dfrac{1}{3}< x\le1\right)=2x\)
\(\sqrt{2-\sqrt{3}}\left(\sqrt{6}+\sqrt{2}\right)=\sqrt{2-\sqrt{3}}.\sqrt{2}\left(\sqrt{3}+1\right)=\sqrt{4-2\sqrt{3}}\left(\sqrt{3}+1\right)\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}\left(\sqrt{3}+1\right)=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)=2\)
\(\left(\sqrt{10}+\sqrt{2}\right)\left(6-2\sqrt{5}\right)\sqrt{3+\sqrt{5}}=\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)^2\sqrt{2}.\sqrt{3+\sqrt{5}}\)
\(=\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)^2\sqrt{6+2\sqrt{5}}=\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)^2\sqrt{\left(\sqrt{5}+1\right)^2}\)
\(=\left(\sqrt{5}+1\right)^2\left(\sqrt{5}-1\right)^2=4^2=16\)
\(\sqrt{23-8\sqrt{7}}+\sqrt{8-2\sqrt{7}}=\sqrt{\left(2\sqrt{7}-4\right)^2}+\sqrt{\left(\sqrt{7}-1\right)^2}\)
\(=2\sqrt{7}-4+\sqrt{7}-1=3\sqrt{7}-5\)
\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
\(=\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}\)
\(=\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=\left|\sqrt{x-1}+1\right|+\left|\sqrt{x-1}-1\right|\)
\(=\sqrt{x-1}+1+1-\sqrt{x-1}=2\)
\(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\)
\(=\sqrt{x-4+4\sqrt{x-4}+4}+\sqrt{x-4-4\sqrt{x-4}+4}\)
\(=\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}=\left|\sqrt{x-4}+2\right|+\left|\sqrt{x-4}-2\right|\)
Xét \(x\ge8\Rightarrow\sqrt{x-4}\ge2\Rightarrow\)biểu thức \(=\sqrt{x-4}+2+\sqrt{x-4}-2\)
\(=2\sqrt{x-4}\)
Xét \(x< 8\Rightarrow\sqrt{x-4}< 2\Rightarrow\) biểu thức \(=\sqrt{x-4}+2+2-\sqrt{x-4}=4\)
Đặt \(x=\left[x\right]+\left\{x\right\}\)
\(\Rightarrow\left[3x\right]=\left[3\left[x\right]+3\left\{x\right\}\right]=3\left[x\right]+\left[3\left\{x\right\}\right]\)
\(\left[x+\frac{2}{3}\right]=\left[\left[x\right]+\left\{x\right\}+\frac{2}{3}\right]=\left[x\right]+\left[\left\{x\right\}+\frac{2}{3}\right]\)
\(\left[x+\frac{1}{3}\right]=\left[x\right]+\left[\left\{x\right\}+\frac{1}{3}\right]\)
\(\Rightarrow\left[x+\frac{2}{3}\right]+\left[x+\frac{1}{3}\right]+\left[x\right]=3\left[x\right]+\left[\left\{x\right\}+\frac{2}{3}\right]+\left[\left\{x\right\}+\frac{1}{3}\right]\)
Ta cần chứng minh \(\left[3\left\{x\right\}\right]=\left[\left\{x\right\}+\frac{2}{3}\right]+\left[\left\{x\right\}+\frac{1}{3}\right]\)
- Nếu \(\frac{2}{3}\le\left\{x\right\}< 1\Rightarrow\left\{{}\begin{matrix}2\le\left[3\left\{x\right\}\right]< 3\\1\le\left[\left\{x\right\}+\frac{2}{3}\right]< 2\\1\le\left[\left\{x\right\}+\frac{1}{3}\right]< 2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[3\left\{x\right\}\right]=2\\\left[\left\{x\right\}+\frac{2}{3}\right]=1\\\left[\left\{x\right\}+\frac{1}{3}\right]=1\end{matrix}\right.\)
\(\Rightarrow\left[3\left\{x\right\}\right]=\left[\left\{x\right\}+\frac{2}{3}\right]+\left[\left\{x\right\}+\frac{1}{3}\right]\)
- Nếu \(\frac{1}{3}\le\left\{x\right\}< \frac{2}{3}\Rightarrow\left\{{}\begin{matrix}1\le\left[3\left\{x\right\}\right]< 2\\1\le\left[\left\{x\right\}+\frac{2}{3}\right]< 2\\0\le\left[\left\{x\right\}+\frac{1}{3}\right]< 1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[3\left\{x\right\}\right]=1\\\left[\left\{x\right\}+\frac{2}{3}\right]=1\\\left[\left\{x\right\}+\frac{1}{3}\right]=0\end{matrix}\right.\)
\(\Rightarrow\left[3\left\{x\right\}\right]=\left[\left\{x\right\}+\frac{2}{3}\right]+\left[\left\{x\right\}+\frac{1}{3}\right]\)
- Nếu \(0< \left\{x\right\}< \frac{1}{3}\) tương tự trên ta có:
\(\left\{{}\begin{matrix}\left[3\left\{x\right\}\right]=0\\\left[\left\{x\right\}+\frac{2}{3}\right]=0\\\left[\left\{x\right\}+\frac{1}{3}\right]=0\end{matrix}\right.\) \(\Rightarrow\left[3\left\{x\right\}\right]=\left[\left\{x\right\}+\frac{2}{3}\right]+\left[\left\{x\right\}+\frac{1}{3}\right]\)
- Với \(x=0\Rightarrow144>0\) (đúng)
- Với \(x\ne0\)
\(VT=\left(x-2\right)\left(x-6\right)\left(x+3\right)\left(x+4\right)+57x^2\)
\(=\left(x^2+12-8x\right)\left(x^2+12+7x\right)+57x^2\)
\(=x^2\left[\left(x+\frac{12}{x}-8\right)\left(x+\frac{12}{x}+7\right)+57\right]\)
\(=x^2\left[\left(x+\frac{12}{x}-8\right)^2+15\left(x+\frac{12}{x}-8\right)+57\right]\)
\(=x^2\left[\left(x+\frac{12}{x}-8+\frac{15}{2}\right)^2+\frac{3}{4}\right]>0;\forall x\ne0\)
Vậy...
(x-1)(x-3)(x-4)(x-6)+10=(x-1)(x-6)(x-3)(x-4)+10
=(x2-7x+6)(x2-7x+12)+10 (*)
Đặt x2-7x+9=a
\(\Rightarrow\)(*)\(\Leftrightarrow\) (a-3)(a+3)+10=a2-9+10=a2+1\(\ge\)1 với mọi x