Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử điều phải chứng minh là đúng thì:
\(\dfrac{\left(a+c\right)^2}{\left(a-c\right)^2}=\dfrac{\left(b+d\right)^2}{\left(b-d\right)^2}\\ \Rightarrow\left[\left(a+c\right)\left(b-d\right)\right]^2=\left[\left(a-c\right)\left(b+d\right)\right]^2\\ \Leftrightarrow\left(ab+bc-ad-cd\right)^2=\left(ab+ad-bc-cd\right)^2\\ \Leftrightarrow\left(ab+bc-ad-cd\right)^2-\left(ab+ad-bc-cd\right)^2=0\\ \Leftrightarrow\left(ab+bc-ad-cd+ab+ad-bc-cd\right)\left(ab+bc-ad-cd-ab-ad+bc+cd\right)=0\\ \Leftrightarrow\left(2ab-2cd\right)\left(2bc-2ad\right)=0\\ \Leftrightarrow\left(ab-cd\right)\left(bc-ad\right)=0\\ \Rightarrow\left[{}\begin{matrix}ab-cd=0\\bc-ad=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}ab=cd\\bc=ad\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{a}{c}=\dfrac{d}{b}\\\dfrac{a}{b}=\dfrac{c}{d}\left(đúng\right)\end{matrix}\right.\)
do đó điều phải chứng minh là đúng
Bài 1:
Nếu biểu thức A như bạn viết, thì sau khi rút gọn, $A=54x+270$ là biểu thức có giá trị phụ thuộc vào biến.
Sửa đề:
\(A=(x+3)^3-(x+9)(x^2+27)\)
\(=(x+3)(x+3)(x+3)-(x^3+27x+9x^2+243)\)
\(=(x^2+6x+9)(x+3)-(x^3+27x+9x^2+243)\)
\(=(x^3+3x^2+6x^2+18x+9x+27)-(x^3+27x+9x^2+243)\)
\(=(x^3+9x^2+27x+27)-(x^3+27x+9x^2+243)\)
\(=27-81=-216\) là biểu thức có giá trị không phụ thuộc vào biến $x $ (đpcm)
\(B=(x+y)(x^2-xy+y^2)+(x-y)(x^2+xy+y^2)-2(x^3-9)\)
\(=(x^3+y^3)+(x^3-y^3)-2(x^3-9)\) (hằng đẳng thức đáng nhớ)
\(=2x^3-2(x^3-9)=18\) là biểu thức có giá trị không phụ thuộc vào biến $x$ (đpcm)
Bài 2:
Sửa đề: Cho \((a^2+b^2)(x^2+y^2)=(ax+by)^2\)
CMR: \(\frac{a}{x}=\frac{b}{y}\)
Bạn lưu ý viết đề bài chính xác hơn.
-----------------------------
Ta có: \((a^2+b^2)(x^2+y^2)=(ax+by)^2\)
\(\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2ax.by+b^2y^2\)
\(\Leftrightarrow a^2y^2+b^2x^2=2ay.bx\)
\(\Leftrightarrow (ay)^2-2ay.bx+(bx)^2=0\)
\(\Leftrightarrow (ay-bx)^2=0\Leftrightarrow ay=bx\Leftrightarrow \frac{a}{x}=\frac{b}{y}\)
Ta có đpcm.
\(P=a-\left\{\left(a-3\right)-\left[\left(a-3\right)-\left(-a-2\right)\right]\right\}\\ =a-\left(a-3\right)+\left[\left(a-3\right)-\left(-a-2\right)\right]\\ =a-\left(a-3\right)+\left(a-3\right)-\left(-a-2\right)\\ =a-a+3+a-3+a+2\\ =\left(a-a+a+a\right)+\left(3-3+2\right)\\ =2a+2\)
\(Q=\left[a+\left(a+3\right)\right]-\left[\left(a+2\right)-\left(a-2\right)\right]\\ =a+\left(a+3\right)-\left(a+2\right)+\left(a-2\right)\\ =a+a+3-a-2+a-2\\ =\left(a+a-a+a\right)+\left(3-2-2\right)\\ =2a-1\)
Vì \(2a+2>2a-1\) nên \(P>Q\)
Vậy \(P>Q\)
b) Ta có :
\(VT=\left(4x-3y+2\right)-\left(3x-4y+2\right)\)
\(=4x-3y+2-3x+4y-2\)
\(=\left(4x-3x\right)-\left(3y-4y\right)+\left(2-2\right)\)
\(=x+y\)
\(VP=\left(2x+2y\right)-\left(x+y\right)=2x+2y-x-y\)
\(=\left(2x-x\right)+\left(2y-y\right)\)
\(=x+y\)
\(\Rightarrow VT=VP\)
\(\Rightarrow\)đpcm
Bài 1: Phá dấu ngoặc rồi tính:
a. \(\left(a+b+c\right)-\left(a-b+c\right)\)
\(=a+b+c-a+b-c\)
\(=\left(a-a\right)+\left(b+b\right)+\left(c-c\right)\)
\(=2b\)
b. \(\left(4x+5y\right)-\left(5x-4y-1\right)\)
\(=4x+5y-5x+4y+1\)
\(=\left(4x-5x\right)+\left(5y+4y\right)+1\)
\(=-x+9y+1\)
+) \(\left(a+b\right)\left(a-b\right)=a\left(a-b\right)+b\left(a-b\right)=a^2-ab+ba-b^2=a^2-b^2\left(đpcm\right)\)
+) \(\left(a+b\right)^2=\left(a+b\right)\left(a+b\right)=a\left(a+b\right)+b\left(a+b\right)=a^2+ab+ba+b^2=a^2+2ab+b^2\left(đpcm\right)\)
Bài này chỉ đơn giản là nhân đa thức với đa thức
\(\left(a+b\right)\left(a-b\right)=a^2-ab+ab-b^2=a^2-b^2\)
\(\left(a+b\right)^2=\left(a+b\right)\left(a+b\right)=a^2+ab+ab+b^2=a^2+2ab+b^2\)