Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì s,y,z,t là stn khác 0 \(\Rightarrow\frac{x}{x+y+z}< \frac{x}{x+y};\frac{y}{x+y+t}< \frac{y}{x+y}\Rightarrow\frac{x}{x+y+z}+\frac{y}{x+y+t}< \frac{x}{x+y}+\frac{y}{x+y}=1\)
\(\frac{z}{y+z+t}< \frac{z}{z+t};\frac{t}{x+z+t}< \frac{t}{z+t}\Rightarrow\frac{z}{y+z+t}+\frac{t}{x+y+t}< \frac{z}{z+t}+\frac{t}{z+t}=1\)
\(\Rightarrow M=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}< 1+1=2\)
\(\Rightarrow M^{10}< 2^{10}=1024< 1025\Rightarrow M^{10}< 1025\)
Từ gt\(\Rightarrow\)\(\hept{\begin{cases}x+xyzt-y-xyzt=1000\\x+xyzt+y+xyzt=2974\end{cases}\Rightarrow\hept{\begin{cases}x-y=100\\x+y+2xyzt=2974\end{cases}}}\)
Vì x-y chẵn và x+y chẵn nên x,y chẵn
Tương tự ta có:z,t chẵn.Suy ra:\(x+xyzt\) chẵn,trái với giả thiết
Vậy không có x,y,z,t thỏa mãn
Ta có x+y=z+t
=>y=z+t-x
=>x(z+t-x)=zt-1
=>xz+xt-x2=zt-1
=>x(z-x)=zt-xt-1
=>x(z-x)=t(z-x)-1
=>t(z-x)-x(z-x)=1
=>(t-x)(z-x)=1
TH1:
t-x=z-x=1(x;y;z;t E N sao)
=>z=t(vì =x+1)(đpcm)
TH2:
t-x=z-x=-1(vì x;y;z;t E N sao)
=>z=t(vì =x-1)(đpcm)
Vậy z=t
cho xin cảm ơn
\(\hept{\begin{cases}xy=a\\x+y=b\end{cases}\Rightarrow x\left(b-x\right)=a\Leftrightarrow-x^2+bx=a\Leftrightarrow x^2-bx+\frac{b^2}{4}=\frac{b^2}{4}-a}\)
\(\Leftrightarrow\left(x-\frac{b}{2}\right)^2=\left(\frac{b^2}{4}-a\right)=\frac{b^2-4a}{4}\)
có nghiệm \(\Rightarrow b^2-4a\ge0\)
\(\hept{\begin{cases}x=\frac{b-\sqrt{b^2-4a}}{2}\\x=\frac{b+\sqrt{b^2-4a}}{2}\end{cases}}\)
Nghiệm nguyên \(b^2-4a=n^2.b^2\) Với n phải là số lẻ Đảm khi cộng(+) trừ(-) b ra số chẵn
\(\left(z+t\right)^2-4\left(xt\right)+4=n^2\left(z+t\right)^2\)
\(\left(z-t\right)^2+4=n^2\left(z+t\right)^2\)
\(\Leftrightarrow\left[n\left(z+t\right)\right]^2-\left(z-t\right)^2=4\)
Hiệu hai số CP =4 duy nhất có 4 và 0
\(\hept{\begin{cases}\left(z-t\right)^2=0\Rightarrow z=t\\\left[n\left(z+t\right)\right]^2=4\end{cases}}\Rightarrow dpcm\)