Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: (x+y)6 + (x-y)6 = \(\left(x+y\right)^{2^3}+\left(x-y\right)^{2^3}\)
=\(\left(\left(x+y\right)^2+\left(x-y\right)^2\right)\left(\left(x+y\right)^4-\left(x+y\right)^2\left(x-y\right)^2+\left(x-y\right)^4\right)\)
= 2(x2+y2)\(\left(\left(x+y\right)^4-\left(x+y\right)^2\left(x-y\right)^2+\left(x-y\right)^4\right)\)
Cái trên chia hết cho G(x) vì có thừa số 2(x2+y2) chia hết
a. đặt tính
x4-2x3-2x2+ax+b / x2-3x+2
x4-3x3 x2+x+1
x3-2x2+ax+b
x3-3x2+2x
x2+(a-2)x+b
x2-3x+2
=> để f(x) chia hết cho g(x) =>\(\orbr{\orbr{\begin{cases}a-2=-3=>a=-1\\b=2\end{cases}}}\)
b. làm tương tự câu a
\(x^3+x^2+a=\left(x+2\right)\left(x^2-x-2\right)+\left(a+4\right)\)
Để x3+x2+a chia hết x +2 thì
a+4 = 0
=> a=-4