K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2018

Ta có: \(\dfrac{1}{9}=\left(\dfrac{1}{3}\right)^2=\dfrac{1}{3.3}< \dfrac{1}{2.3}\)

\(\dfrac{1}{16}=\left(\dfrac{1}{4}\right)^2=\dfrac{1}{4.4}< \dfrac{1}{3.4}\)

................

\(\dfrac{1}{\left(2n+1\right)^2}< \dfrac{1}{2n\left(2n+1\right)}\)

\(\dfrac{1}{9}+\dfrac{1}{16}+......+\dfrac{1}{\left(2n+1\right)^2}\)< \(\dfrac{1}{2.3}+\dfrac{1}{3.4}+.....+\dfrac{1}{2n.\left(2n+1\right)}\)

= \(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{2n}-\dfrac{1}{2n+1}\)

= \(\dfrac{1}{2}-\dfrac{1}{2n+1}\)

= \(\dfrac{2n+1-2}{2n+1}\)

= \(\dfrac{2n-1}{2n+1}\)= \(1-\dfrac{2}{2n+1}\)

Ta có: n ≥ 1⇒ 2n+1 ≥ 3

\(1-\dfrac{2}{2n+1}\)\(\dfrac{1}{3}\)

hình như đề sai thì phải

15 tháng 10 2017

\(\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}......\dfrac{2n-1}{2n}=\dfrac{1.2.3.....\left(2n-1\right)}{2.3.4.....2n}=\dfrac{1}{2n}\)

Khi đó ta có điều cần chứng minh:

\(\dfrac{1}{2n}\le\dfrac{1}{\sqrt{3n+1}}\left(n>\dfrac{1}{3}\right)\)

Hay

\(\dfrac{\sqrt{3n+1}}{2n\left(\sqrt{3n+1}\right)}\le\dfrac{2n}{2n\left(\sqrt{3n+1}\right)}\)

Hay \(\sqrt{3n+1}\le2n\)(luôn đúng)

NV
22 tháng 1 2019

\(\dfrac{1}{\left(3n-1\right)\left(3n+2\right)}=\dfrac{1}{3}\left(\dfrac{1}{3n-1}-\dfrac{1}{3n+2}\right)\)

\(\Rightarrow A=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{3n-1}-\dfrac{1}{3n+2}\right)\)

\(\Rightarrow A=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{3n+2}\right)\)

\(\Rightarrow A=\dfrac{3n}{6\left(3n+2\right)}=\dfrac{n}{6n+4}\)

\(\dfrac{1}{\left(2n-1\right)\left(2n+1\right)\left(2n+3\right)}=\dfrac{1}{4}\left(\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}-\dfrac{1}{\left(2n+1\right)\left(2n+3\right)}\right)\)

\(\Rightarrow B=\dfrac{1}{4}\left(\dfrac{1}{1.3}-\dfrac{1}{3.5}+\dfrac{1}{3.5}-\dfrac{1}{3.7}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}-\dfrac{1}{\left(2n+1\right)\left(2n+3\right)}\right)\)

\(\Rightarrow B=\dfrac{1}{4}\left(\dfrac{1}{1.3}-\dfrac{1}{\left(2n+1\right)\left(2n+3\right)}\right)\)

\(\Rightarrow B=\dfrac{n\left(n+2\right)}{3\left(2n+1\right)\left(2n+3\right)}\)

\(\sqrt{1+\dfrac{1}{n^2}+\dfrac{1}{\left(n+1\right)^2}}=\sqrt{\dfrac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}}\)

\(=\sqrt{\dfrac{n^2\left(n+1\right)^2+2n^2+2n+1}{n^2\left(n+1\right)^2}}=\sqrt{\dfrac{n^2\left(n+1\right)^2+2n\left(n+1\right)+1}{n^2\left(n+1\right)^2}}\)

\(=\sqrt{\dfrac{\left[n\left(n+1\right)+1\right]^2}{n^2\left(n+1\right)^2}}=\dfrac{n\left(n+1\right)+1}{n\left(n+1\right)}=1+\dfrac{1}{n\left(n+1\right)}=1+\dfrac{1}{n}-\dfrac{1}{n+1}\)

\(\Rightarrow C=1+\dfrac{1}{1}-\dfrac{1}{2}+1+\dfrac{1}{2}-\dfrac{1}{3}+1+\dfrac{1}{3}-\dfrac{1}{4}+...+1+\dfrac{1}{2018}-\dfrac{1}{2019}\)

\(\Rightarrow C=2019-\dfrac{1}{2019}\)

22 tháng 1 2019

@Luân Đào @Nguyễn Việt Lâm

AH
Akai Haruma
Giáo viên
23 tháng 11 2017

Lời giải:

Sử dụng quy nạp:

Với \(n=1\Rightarrow \frac{1}{2}< \frac{1}{\sqrt{3}}\) (đúng)

Với \(n=2\Rightarrow \frac{1.3}{2.4}< \frac{1}{\sqrt{5}}\) (đúng)

.............

Giả sử bài toán đúng với \(n=k\), tức là :

\(\frac{1.3.5...(2k-1)}{2.4.6...2k}< \frac{1}{\sqrt{2k+1}}\) (*)

Ta cần chỉ ra nó cũng đúng với \(n=k+1\) hay :

\(\frac{1.3.5....(2k-1)(2k+1)}{2.4.6....(2k)(2k+2)}< \frac{1}{\sqrt{2k+3}}\). Thật vậy, theo (*) ta có:

\(\frac{1.3.5....(2k-1)(2k+1)}{2.4.6....(2k)(2k+2)}< \frac{1}{\sqrt{2k+1}}.\frac{2k+1}{2k+2}=\frac{\sqrt{2k+1}}{2k+2}\) (1)

Xét \(\frac{\sqrt{2k+1}}{2k+2}-\frac{1}{\sqrt{2k+3}}=\frac{\sqrt{(2k+1)(2k+3)}-(2k+2)}{(2k+2)\sqrt{2k+3}}\) \(=\frac{-1}{[\sqrt{(2k+1)(2k+3)}+(2k+2)](2k+2)\sqrt{2k+3}}<0\)

Suy ra \(\frac{\sqrt{2k+1}}{2k+2}< \frac{1}{\sqrt{2k+3}}(2)\)

Từ \((1);(2)\Rightarrow \frac{1.3.5....(2k-1)(2k+1)}{2.4.6....(2k)(2k+2)}< \frac{1}{\sqrt{2k+3}}\)

Vậy bài toán đúng với \(n=k+1\), phép quy nạp hoàn thành.

Do đó ta có đpcm.

14 tháng 7 2017

by AM-GM: \(\dfrac{1}{\left(n+n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{n+n+1}\le\dfrac{1}{2}\left(\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}\right)=\dfrac{1}{2}.\left(\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\right)\)

22 tháng 1 2019

@Luân Đào