Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(gcd\left(1991;10^k\right)=1\) với mọi \(k\).
Giả sử ko có số nào dạng \(2003...2003\) mà chia hết cho \(1991\).
Xét \(1992\) số \(2003,20032003,...,20032003...2003\) (số cuối cùng có \(1992\) lần lặp \(2003\)).
Theo nguyên lí Dirichlet thì tồn tại 2 số cùng số dư khi chia cho \(1991\).
Gọi chúng là \(2003...2003\) có \(m\) và \(n\) lần lặp số \(2003\).
Ta trừ chúng cho nhau, ở đây cho \(m>n\) thì hiệu là con số này:
\(2003...2003000...000\) (trong đó có \(m-n\) số \(2003\)và \(n\) số \(0\))
Số này chia hết cho \(1991\).
Mà \(gcd\left(1991;10^n\right)=1\) nên \(2003...2003\) (với \(m-n\) số \(2003\)) chia hết cho \(1991\) (vô lí)
Vậy điều giả sử là sai, suy ra đpcm.
200320032003.............2003=2003*1000100010001...........10001
Mà 2003 không chia hết cho 2013 và 100010001............10001 cũng không chia hết cho 2013 nên số 200320032003........2003 không chia hết cho 2013
tick nha Liên dễ thương
Xét dãy gồm \(100\) số hạng :
\(2003\); \(20032003;\) .............. ; \(20032003............2003\)
Lấy \(100\) số hạng của dãy chia cho \(99\) ta được \(100\) số dư nhận các giá trị là :
\(0;\) \(1;\) \(2;...............;\)\(98\) (\(99\) giá trị)
\(\Rightarrow\) Có ít nhất 2 số dư bằng nhau
\(\Rightarrow\) Ở dãy trên có ít nhất 2 số đồng dư với nhau khi chia cho 99
\(\Rightarrow\) Hiệu 2 số đó có dạng :
\(20032003............200300.........000\) \(⋮\) \(99\)
\(20032003......2003\) . \(10^k\) \(⋮\) \(99\)
\(\Rightarrow\) \(20032003...........2003\) \(⋮\) \(99\) (do \(10^k\) và \(2013\) nguyên tố cùng nhau)
Vậy tồn tại một số có dạng \(20032003.................2003\) chia hết cho 99
\(\Rightarrowđpcm\)
Chúc bn học tốt!!!
- xét dãy số gom 2002 số hạng sau :
2003, 2003.... 2003 , 2003 ... 2003
2002 lan 2003
chia tất cả số hạng của dãy số 2002 có 2002 số dư từ 1 đến 2002[ ko thể có số dư 0 vì các số hạng là số lẻ ]
có 2002 phép chia nên theo nguyên tắc dirichlet phải có ít nhất 2 số có cùng số dư khi chia 2002
giả sử 2 số đó là am và an [m,n N]; 1< = m
voi am = 2003 2003... 2003; an = 2003 2003 ... 2003
ta có :[an- am] chia het cho 2002
hay 2003 2003.... 2003 00 ...00 luon chia het cho 2002
vậy tồn tại có một số dạng 2003 2003 ... 20032003 ..... 200300 ...0 chia het cho 2002
k mk nha
xét dãy số sau:
2003;20032003;..;20032003(có n số 2003; n >2004)
nhậnxét: các số trong dãy đều là các số lẻ nên không chia hết cho 2004
=> số bất kì trong dãy chia cho 2004 có thể dư 1;2;3;...;2003 dảy trên có nhiều hơn 2003 số nên theo nguyên lì dirichle => có ít nhất 2 số chia cho 2004 có cùng mợt số dư
=> số có dạng 20032003...2003...2003(có 2003+m số 2003) và số 2003..2033(có m số 2003) có cùng số dư
=> hiệu của chúng chia hết cho 2004
hay số 2003200300..00(có 2003 số 2003) chia hết chi 2004
NHỚ TICK**