Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta đặt số cần tìm là 2p+1=k³ (k∈N)
<=> 2p=k³-1
<=> 2p= (k-1)(k²+k+1)
Thấy rằng vế trái có p là số nguyên tố, nghĩa là vế phải có một biểu thức bằng 2, biểu thức kia bằng p.Mà k²+k+1= k(k+1)+1, k(k+1) chia hết cho 2 nên k(K+1)+1 không chia hết cho 2. Do đó
{k-1=2
{k²+k+1=p
Giải hệ phương trình ta được k=3, p=13 (thỏa mãn)
Vậy chỉ có số duy nhất cần tìm là 27.
Em tham khảo!
Câu 3: Câu hỏi của trần như - Toán lớp 8 - Học toán với OnlineMath
Câu 2: Câu hỏi của Hoàng Bình Minh - Toán lớp 8 - Học toán với OnlineMath
Ta thấy p = 2 thì 2p + 1 = 5 không thỏa = n³
♣ Nếu p > 2 => p lẻ (Do Số nguyên tố chẵn duy nhất là 2 )
Mặt khác : 2p + 1 là 1 số lẻ => n³ là một số lẻ => n là một số lẻ
=> 2p + 1 = (2k + 1)³ ( với n = 2k + 1 )
<=> 2p + 1 = 8k³ + 12k² + 6k + 1
<=> p = k(4k² + 6k + 3)
=> p chia hết cho k
=> k là ước số của số nguyên tố p.
Do p là số nguyên tố nên k = 1 hoặc k = p
♫ Khi k = 1
=> p = (4.1² + 6.1 + 3) = 13 (nhận)
♫ Khi k = p
=> (4k² + 6k + 3) = (4p² + 6p + 3) = 1
Do p > 2 => (4p² + 6p + 3) > 2 > 1
=> không có giá trị p nào thỏa.
Đáp số : p = 13
Vì p là số nguyên tố nên 2p + 1 là số lẻ. Mà x 3 = 2p + 1 nên x 3 cũng là một số lẻ, suy ra x là số lẻ
Gọi x = 2k + 1 (k Є N). ta có
x 3 = 2p + 1 ó ( 2 k + 1 ) 3 = 2p + 1
⇔ 8 k 3 + 12 k 2 + 6 k + 1 = 2 p + 1 ⇔ 2 p = 8 k 3 + 12 k 2 + 6 k ⇔ p = 4 k 3 + 6 k 2 + 3 k = k ( 4 k 2 + 6 k + 3 )
Mà p là số nguyên tố nên k = 1 => x = 3
Vậy số cần tìm là x = 3
Đáp án cần chọn là: D
Ta đặt số cần tìm là 2p + 1 = k³ ( k ∈ N )
<=> 2p = k³ - 1
<=> 2p = ( k - 1 )( k² + k + 1 )
Thấy rằng vế trái có p là số nguyên tố, nghĩa là vế phải có một biểu thức bằng 2, biểu thức kia bằng p. Mà k² + k + 1 = k( k + 1 ) + 1, k( k + 1 ) chia hết cho 2 => k( k + 1 ) + 1 không chia hết cho 2.
=>{k-1=2
{k²+k+1=p
Giải hệ phương trình ta được k=3, p=13 (thỏa mãn)
Vậy chỉ có số duy nhất cần tìm là 27.
Ta đặt số cần tìm là 2p + 1 = k³ ( k ∈ N )
<=> 2p = k³ - 1
<=> 2p = ( k - 1 )( k² + k + 1 )
Thấy rằng vế trái có p là số nguyên tố, nghĩa là vế phải có một biểu thức bằng 2, biểu thức kia bằng p. Mà k² + k + 1 = k( k + 1 ) + 1, k( k + 1 ) chia hết cho 2 => k( k + 1 ) + 1 không chia hết cho 2.
=>{k-1=2
{k²+k+1=p
Giải hệ phương trình ta được k=3, p=13 (thỏa mãn)
Vậy chỉ có số duy nhất cần tìm là 27.