Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Gọi d=ƯCLN(15n+1;30n+1)
=>30n+2-30n-1 chia hết cho d
=>1 chia hết cho d
=>Đây là phân số tối giản
b: Gọi d=ƯCLN(3n+2;5n+3)
=>15n+10-15n-9 chia hết cho d
=>1 chia hết cho d
=>d=1
=>Phân số tối giản
a: Gọi d=ƯCLN(15n+1;30n+1)
=>30n+2-30n-1 chia hết cho d
=>1 chia hết cho d
=>Đây là phân số tối giản
b: Gọi d=ƯCLN(3n+2;5n+3)
=>15n+10-15n-9 chia hết cho d
=>1 chia hết cho d
=>d=1
=>Phân số tối giản
Gọi Ư( n+1; 2 n+3 ) = d ( d∈N* )
n +1 = 2n + 2 (1) ; 2n+3*) (2)
Lấy (2 ) - (1) ta được : 2n + 3 - 2n + 2 = 1:d => d =1
vậy ta có đpcm
gọi Ư ( 3n + 2 ; 5n + 3 ) = d ( d∈N* )
3n +2 = 15 n + 10 (1) ; 5n + 3 =15n + 9 (2)
lấy (!) - (2) ta được 15n + 10 - 15n - 9 = 1:d => d = 1
Vậy ta có đpcm
a:
Sửa đề: \(\dfrac{n+1}{2n+3}\)
Gọi d=ƯCLN(n+1;2n+3)
=>2n+2-2n-3 chia hết cho d
=>-1 chia hết cho d
=>d=1
=>ĐPCM
b: Gọi d=ƯCLN(4n+8;2n+3)
=>4n+8-4n-6 chia hết cho d
=>2 chia hêt cho d
=>d=1
=>ĐPCM
c: Gọi d=ƯCLN(3n+2;5n+3)
=>15n+10-15n-9 chia hết cho d
=>1 chia hết cho d
=>d=1
=>ĐPCM
Gọi Ư(n+1;2n+3) = d ( \(d\in\)N*)
\(n+1=2n+2\left(1\right);2n+3\left(2\right)\)
Lấy (2 ) - (1) ta được : \(2n+3-2n+2=1⋮d\Rightarrow d=1\)
Vậy ta có đpcm
Gọi Ư\(\left(3n+2;5n+3\right)=d\)( d \(\in\)N*)
\(3n+2=15n+10\left(1\right);5n+3=15n+9\left(2\right)\)
Lấy (!) - (2) ta được : \(15n+10-15n-9=1⋮d\Rightarrow d=1\)
Vậy ta có đpcm
a) Gọi \(d\) là UCLN \(\left(n+1,2n+3\right)\left(d\in N\right)\)
Ta có : \(\left[{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)
\(\Rightarrow2n+3-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\left(đpcm\right)\)
b) Gọi \(d\) là \(UCLN\left(2n+3,4n+8\right)\left(d\in N\right)\)
Ta có : \(\left[{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)
\(\Rightarrow4n+8-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Mà 2n+3 là số lẻ nên
\(\Rightarrow d=1\left(đpcm\right)\)
c) Gọi \(d\) là \(UCLN\left(3n+2;5n+3\right)\left(d\in N\right)\)
Ta có : \(\left[{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)
\(\Rightarrow15n+10-\left(15n+9\right)⋮d\)
\(\Rightarrow d=1\left(đpcm\right)\)
a: Gọi d=ƯCLN(2n+7;2n+3)
=>2n+7 chia hết cho d và 2n+3 chia hết cho d
=>2n+7-2n-3 chia hết cho d
=>4 chia hết cho d
mà 2n+7 lẻ
nên d=1
=>PSTG
b: Gọi d=ƯCLN(6n+5;8n+7)
=>4(6n+5)-3(8n+7) chia hết cho d
=>-1 chia hết cho d
=>d=1
=>PSTG
Hướng dẫn: Đặt (tử, mẫu)=d
Phương pháp: Tìm được d = 1.
Cách làm: Nhân tử với a, nhân mẫu với b (a, b là số nguyên) sao cho khi trừ đi 2 kết quả mới triệt tiêu được 2 biểu thức chứa n.
Cuối cùng sẽ tìm được 1 là bội của b => d=1
Còn lại cậu tự làm nhé!
a) Gọi d là ƯCLN(n + 1; n + 2)
\(\Rightarrow n+1⋮d\)
\(n+2⋮d\)
\(\Rightarrow\left[\left(n+2\right)-\left(n+1\right)\right]⋮d\)
\(\Rightarrow\left(n+2-n-1\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\dfrac{n+1}{n+2}\) là phân số tối giản
b) Gọi d là ƯCLN(n + 1; 3n + 4)
\(\Rightarrow n+1⋮d\) và \(3n+4⋮d\)
Do \(n+1⋮d\Rightarrow3n+3⋮d\)
\(\Rightarrow\left[\left(3n+4\right)-\left(3n+3\right)\right]⋮d\)
\(\Rightarrow\left(3n+4-3n-3\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\dfrac{n+1}{3n+4}\) là phân số tối giản
c) Gọi d là ƯCLN(3n + 2; 5n + 3)
\(\Rightarrow3n+2⋮d\) và \(5n+3⋮d\)
Do \(3n+2⋮d\)
\(\Rightarrow5\left(3n+2\right)⋮d\)
\(\Rightarrow15n+10⋮d\) (1)
Do \(5n+3⋮d\)
\(\Rightarrow3\left(5n+3\right)⋮d\)
\(\Rightarrow15n+9⋮d\) (2)
Từ (1) và (2) \(\Rightarrow\left[\left(15n+10\right)-\left(15n+9\right)\right]⋮d\)
\(\Rightarrow\left(15n+10-15n-9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\dfrac{3n+2}{5n+3}\) là phân số tối giản
d) Gọi d là ƯCLN(12n + 1; 30n + 2)
\(\Rightarrow12n+1⋮d\) và \(30n+2⋮d\)
Do \(12n+1⋮d\)
\(\Rightarrow5\left(12n+1\right)⋮d\)
\(\Rightarrow60n+5⋮d\) (3)
Do \(30n+2⋮d\)
\(\Rightarrow2\left(30n+2\right)⋮d\)
\(\Rightarrow60n+4⋮2\) (4)
Từ (3 và (4) \(\Rightarrow\left[\left(60n+5\right)-\left(60n+4\right)\right]⋮d\)
\(\Rightarrow\left(60n+5-60n-4\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\dfrac{12n+1}{30n+2}\) là phân số tối giản
a: Gọi d=ƯCLN(n+1;n+2)
=>n+2-n-1 chia hết cho d
=>1 chia hết cho d
=>d=1
=>PSTG
b: Gọi d=ƯCLN(3n+4;n+1)
=>3n+4-3n-3 chia hết cho d
=>1 chia hết cho d
=>d=1
=>PSTG
c: Gọi d=ƯCLN(3n+2;5n+3)
=>15n+10-15n-9 chia hết cho d
=>1 chia hết cho d
=>d=1
=>PSTG
d: Gọi d=ƯCLN(12n+1;30n+2)
=>60n+5-60n-4 chia hết cho d
=>1 chia hết cho d
=>d=1
=>PSTG