Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{4}{5}\Rightarrow\frac{1}{2}+\frac{3}{10}=\frac{1}{2}+\frac{1}{4}+\frac{1}{20}=\frac{4}{5}\)
Như vậy cũng hơi tắt. Nhưng mà **** cho tôi đi. Bai này có công thức đấy.
\(\frac{a}{b}<1\Rightarrow\frac{a}{b}=\frac{1}{k+1}+\frac{a-r}{b.\left(k+1\right)}\)với k là thương của b cho a, r là số dư của phép chia của b cho a
Câu hỏi của doraemon - Toán lớp 6 - Học toán với OnlineMath
UCLN(a, b) = 15 => a= 15m, b = 15n (m, n khác 0 ) [1]
BCNN(a,b)= 300. Mà a.b= BCNN(a,b). UCLN(a,b) nên ta có
a.b= 300.15=4500 [2]
Từ 1 và 2 ta có 15m.15n= 4500
225.mn= 4500
=> mn=20=4.5=1.20
với m=4 , n=5 thì a=60, b= 75
với m=1 , n=20 thì a=15 , b=300
Vì BCNN (a,b) = 300 và ƯCLN (a,b)=15
Suy ra: a.b = 300.15 = 4500
Vì ƯCLN (a,b) =15 nên: a= 15m và b= 15n (với ƯCLN (m,n) = 1).
Vì a+15 =b,=>15m+15 =15n, =>15(m+1) =15n, => m+1= n.
Mà a.b =4500 nên ta có: 15m.15n =4500
15.15.m.n =4500
15^2.m.n =4500
225.m.n =4500
=> m.n = 20
Suy ra: m=1 và n=20 hoặc m=4 và n=5.
Mà m+1 =n =>m=4 và n =5.
Vậy: a= 15.4= 60 ; b= 15.5= 75.
Phân tích A thành nhân tử được
\(A=n\left(n+1\right)\left(n+2\right)\)
Từ đây việc chứng minh còn lại là khá dễ.
đặt 6 ra ngoài
ta có \(\frac{1}{2}.6.\left(1+\frac{1}{4}+\frac{1}{10}+..............+\frac{1}{1540}\right)\)
=3 \(.\left(1+\frac{1}{1540}\right)\)
=3 \(.\frac{1541}{1540}\)
=3
=>3 > \(\frac{57}{462}\)
=> tích lớn hơn
gọi 2 số cần tìm là abc và def
ta có ;
abcdef = abc000 + def
=100abc + def
=1001abc + ( def - abc )
vì 1001 chia hết cho 13 suy ra 1001abc chia hết cho 13 suy ra 1001abc + (def-abc)chia hết cho 13
theo nguyên lý di-rich-le thì luôn luôn có 2 số mà khi viết liền nhau sẽ tạo thành số có 6 chữ số chia hết cho 13.
MÌNH KO CHẮC CHẮN LẮM ĐÂU ĐÓ !!!
A = 10n +18n -1 = (10n-1)+18n = 999...9 +18n (n chữ số 9)
= 9(1111...111 +2n)chia hết cho 9 (n chữ số 1)
Đặt B = 111...111+2n = 111...111 - n +3n
Tổng các chữ số của 111...111 là n
=> B=111...111 - n +3n chia hết cho 3
=> A chia hết cho 3
Vì (3,9)=1 => A chia hết cho 27
Chứng minh quy nạp \(A=10^n+18n-1\) chia hết cho 27 (1)
+n = 1; A = 27⋮27
+Giả sử (1) đúng với n = k (k ≥ 1); tức là 10k + 18k - 1⋮27
+Ta chứng minh (1) đúng với n = k+1, tức là chứng minh 10k+1 + 18(k+1) - 1⋮27.
Thật vậy, ta có: 10k+1 + 18(k+1) - 1 = 10.10k + 18k + 17 = 27.10k - 17(10k + 18k - 1) +324k = 27(10k + 12) - 17.(10k + 18k - 1)
Mà 10k + 18k - 1⋮27 (giả thiết quy nạp) và 27(10k + 12)⋮27
Nên 10k+1 + 18(k+1) - 1⋮27.
Theo nguyên lí quy nạp, ta có điều phải chứng minh.
còn cách khác dễ hơn nhiều