Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì mấy cái kia cộng lại sẽ bằng 0,477..
1/2=0,5 nên tổng kia sẽ nhỏ hơn 1/2
\(\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=1+\frac{1}{2}+...+\frac{1}{100}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=1+\frac{1}{2}+...+\frac{1}{100}-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)\)
\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)(ĐPCM)
\(D=\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{98.100}\right)\)
Làm tắt nha :
\(D=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{100}\right)\)
\(D=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{99}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(D=\frac{1}{2}.\frac{98}{99}-\frac{1}{2}.\frac{98}{100}\)
\(D=\frac{1}{2}\left(\frac{98}{99}-\frac{98}{100}\right)\)
Tự tính nốt nha
Dat A=1/5^2+1/6^2+1/7^2+............1/100^2<1/4.5+1/5.6+1/6.7+....+1/99.10=
1/4-1/5+1/5-1/6+1/6-1/7+.............1/99-1/100=
14-1/100=25/100-1/100=24/25/100=1/4(1)
A>1/5.6+1/6.7+1/7.8+....+1/100.101=
1/5-1/6+1/6-1/7+1/7-1/8 +...+1/100-1/101=
1/5-1/101>6 (2)
Tu 1 va 2 => dieu can chung minh
chịu thui
chúc bn học gioi!
nhaE@@
Toán lớp 7 bye mk đi hc đây hihi
$$$$
Ta có : \(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}\)
= \(\frac{1}{3}+\)( \(\frac{1}{31}+\frac{1}{35}+\frac{1}{37}\)) \(+\)( \(\frac{1}{47}+\frac{1}{53}+\frac{1}{61}\) ) \(< \)\(\frac{1}{3}+\)( \(\frac{1}{30}+\frac{1}{30}+\frac{1}{30}\)) \(+\)( \(\frac{1}{45}+\frac{1}{45}+\frac{1}{45}\)) = \(\frac{1}{2}\)
Vậy \(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}< \frac{1}{2}\)