Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
với phân số thứ nhất bạn rút 2 ở mẫu ra . còn phân số thứ 2 bạn đổi ra ạ
\(B=2016:\left(\frac{0.4-\frac{2}{9}+\frac{2}{11}}{1.4-\frac{7}{9}+\frac{7}{11}}.\frac{-1\frac{1}{6}+0.875-0.7}{\frac{1}{3}-0.25+\frac{1}{5}}\right)\)
<=>\(B=2016:\left(\frac{\frac{2}{5}-\frac{2}{9}+\frac{2}{11}}{\frac{7}{5}-\frac{7}{9}+\frac{7}{11}}.\frac{\frac{-7}{6}+\frac{7}{8}-\frac{7}{10}}{\frac{1}{3}-\frac{1}{4}+\frac{1}{5}}\right)\)
<=>\(B=2016:\left(\frac{2.\left(\frac{1}{5}.\frac{1}{9}.\frac{1}{11}\right)}{5.\left(\frac{1}{5}.\frac{1}{9}.\frac{1}{11}\right)}.\frac{\frac{7}{6}-\frac{7}{8}-\frac{7}{10}}{\frac{2}{6}-\frac{2}{8}-\frac{2}{10}}\right)\)
<=>\(B=2016:\left(\frac{2}{5}.\frac{7.\left(\frac{1}{6}-\frac{1}{8}-\frac{1}{10}\right)}{2.\left(\frac{1}{6}-\frac{1}{8}-\frac{1}{10}\right)}\right)\)
<=>\(B=2016:\left(\frac{2}{5}.\frac{7}{2}\right)\)
<=>\(B=2016:\frac{7}{5}\)
<=>\(B=2016.\frac{5}{7}\)
<=>\(B=1440\)
Vậy B=1440
k cho mink nha
Trả lời
\(A=\left(\frac{\frac{2}{5}-\frac{2}{9}+\frac{2}{11}}{\frac{7}{5}-\frac{7}{9}+\frac{7}{11}}-\frac{2.\left(\frac{1}{6}-\frac{1}{8}-\frac{1}{10}\right)}{\frac{7}{6}-\frac{7}{8}-\frac{7}{10}}\right):\left(1^2+2^2+...+2015^2\right).\)
\(A=\left(\frac{2}{7}-\frac{2}{7}\right):\left(1^2+2^2+3^2+...+2015^2\right)\)
\(A=0:\left(1^2+2^2+3^2+.....+2015^2\right)\)
A=0
Study well
\(A=...\)
\(=\left(\frac{\frac{2}{5}-\frac{2}{9}+\frac{2}{11}}{\frac{7}{5}-\frac{7}{9}+\frac{7}{11}}-\frac{\frac{1}{3}-\frac{1}{4}+\frac{1}{5}}{\frac{7}{6}-\frac{7}{8}+\frac{7}{10}}\right):\left(1^2+2^2+...+2015^2\right)\)
\(=\left[\frac{2\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{11}\right)}{7\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{11}\right)}-\frac{\frac{1}{3}-\frac{1}{4}+\frac{1}{5}}{\frac{7}{2}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{5}\right)}\right]:\left(1^2+2^2+...+2015^2\right)\)
\(=\left(\frac{2}{7}-\frac{1}{\frac{7}{2}}\right):\left(1^2+2^2+...+2015^2\right)\)
\(=\left(\frac{2}{7}-\frac{2}{7}\right):\left(1^2+2^2+...+2015^2\right)\)
\(=0:\left(1^2+2^2+...+2015^2\right)=0\)
Ta có : \(\frac{1}{10.9}-\frac{1}{9.8}-.....-\frac{1}{2.1}\)
\(=\frac{1}{90}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{9.8}\right)\)
\(=\frac{1}{90}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{8}-\frac{1}{9}\right)\)
\(=\frac{1}{90}-\left(1-\frac{1}{9}\right)\)
\(=\frac{1}{90}-\frac{8}{9}=\frac{-79}{90}\)
\(D=\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{98.100}\right)\)
Làm tắt nha :
\(D=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{100}\right)\)
\(D=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{99}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(D=\frac{1}{2}.\frac{98}{99}-\frac{1}{2}.\frac{98}{100}\)
\(D=\frac{1}{2}\left(\frac{98}{99}-\frac{98}{100}\right)\)
Tự tính nốt nha