K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2018

a + c = 2b

( a + c ) . d = 2bd

Mà 2bd = c . ( b + d )

\(\Rightarrow\)( a + c ) . d = c . ( b + d )

\(\Rightarrow\)ad + cd = bc + cd

\(\Rightarrow\)ad = bc

\(\Rightarrow\)\(\frac{a}{b}=\frac{c}{d}\)( đpcm )

23 tháng 8 2016

+ \(b=\frac{a+c}{2}\Rightarrow2b=a+c.\) (1)

+ \(c=\frac{2bd}{b+d}\Rightarrow bc+cd=2bd\)(2)

Thay (1) vào (2) ta có

\(bc+cd=\left(a+c\right)d=ad+cd\Rightarrow bc=ad\Rightarrow\frac{a}{b}=\frac{c}{d}\left(dpcm\right)\)

2 tháng 7 2018

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng dãy tỉ số bằng nhau:

 \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

2 tháng 7 2018

Có \(\frac{a}{b}=\frac{c}{d}\)\(\left(a;b;c;d\ne0\right)\)

\(\Rightarrow a=b=c=d\)

Lại có \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

Vì \(a=b=c=d\)nên \(\frac{a+b}{a-b}=\frac{b+c}{b-c}=\frac{c+d}{c-d}\)

Vậy nếu \(\frac{a}{b}=\frac{c}{d}\)thì \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)( đpcm )

3 tháng 5 2018

Đặt \(\frac{a}{b}< \frac{c}{d}=k\Rightarrow a< bk;c=dk\Rightarrow a+c< bk+dk=\left(b+d\right)k\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{\left(b+d\right)k}{b+d}=k\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)

22 tháng 10 2018

Ta có : \(\frac{a}{b}>\frac{a+c}{b+d}\)

<=> \(a\left(b+d\right)>b\left(a+c\right)\)

<=> \(ab+ad>bc+ba\)

<=> \(ad>bc\)[ Đoạn này ta thấy ba bên vế trái và vế phải giống nhau nên rút gọn bớt đi ]

<=> \(a>b\)

=> \(\frac{a}{b}>\frac{a+c}{b+d}\)

14 tháng 5 2018

Ta có: 

\(\frac{a}{b+c+d}>\frac{a}{a+b+c+d};\frac{b}{a+c+d}>\frac{b}{a+c+b+d};\frac{c}{b+c+d}>\frac{c}{a+b+c+d}\)

\(\frac{d}{a+b+c}>\frac{d}{a+b+c+d}\)

\(\Rightarrow\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{b+c+d}+\frac{d}{a+b+c}>\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+c+b+d}\)

\(\Rightarrow\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{b+c+d}+\frac{d}{a+b+c}>\frac{a+b+c+d}{a+b+c+d}=1\left(1\right)\)

Vì \(\frac{a}{b+c+d}< 1\Rightarrow\frac{a}{b+c+d}< \frac{a+c}{b+c+a+d}\)

\(\frac{b}{c+d+a}< 1\Rightarrow\frac{b}{b+c}< \frac{b+a}{a+b+c+d}\)

\(\frac{c}{b+c+d}< 1\Rightarrow\frac{c}{b+c+d}< \frac{c+b}{a+b+c+d}\)

\(\frac{d}{a+b+c}< 1\Rightarrow\frac{d}{a+b+c}< \frac{d+b}{a+b+c+d}\)

\(\Rightarrow\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{b+c+d}+\frac{d}{a+b+c}< \frac{a+c}{a+b+c+d}+\frac{b+a}{a+b+c+d}+\frac{c+d}{a+b+c+d}+\frac{d+b}{a+b+c+d}\)

\(\Rightarrow\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{b+c+d}+\frac{d}{a+b+c}< \frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow1< \frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{b+c+d}+\frac{d}{a+b+c}< 2\)

Vậy a,b,c,d>0 thì \(1< \frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{b+c+d}+\frac{d}{a+b+c}< 2\left(đpcm\right)\)

23 tháng 8 2016

\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{a+b}{2ab}\)

\(\Rightarrow2ab=ac+bc\Rightarrow ab-bc=ac-ab\Rightarrow b\left(a-c\right)=a\left(c-b\right)\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\left(dpcm\right)\)