Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
phần c
\(n-7⋮2n+3\)
\(2\left(n-7\right)-\left(2n+3\right)⋮2n+3\)
\(2n-4-2n-3⋮2n+3\)
\(-7⋮2n+3\)
\(\Rightarrow2n+3\inƯ\left(-7\right)=\left\{\pm1;\pm7\right\}\)
Ta có bảng xét :
2n+3 | -1 | 1 | -7 | 7 |
2n | -4 | -2 | -10 | 4 |
n | -1 | 1 | -5 | 2 |
a, Để 7 chia hết cho n - 3 thì n -3 \(\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\) ĐKXĐ \(n\ne3\)
+, Nếu n - 3 = -1 thì n = 2
+' Nếu n - 3 = 1 thì n = 4
+, Nếu n - 3 = -7 thì n = -4 +, Nếu n - 3 = 7 thì n = 10
Vậy n \(\in\left\{2;4;-4;10\right\}\)
b,Để n -4 chia hết cho n + 2 thì n + 2 \(\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)ĐKXĐ \(x\ne-2\)
+, Nếu n + 2 = -1 thì n = -1
+, Nếu n + 2 = 1 thì n = -1
+, Nếu n + 2= 2 thì n = 0
+, Nếu n + 2 = -2 thì n = -4
+, Nếu n + 2 = 3 thì n = 1
+, Nếu n + 2 = -3 thì n = -5
+, Nếu n + 2= 6 thì n = 4
+, Nếu n + 2 = -6 thì n = -8
Vậy cx như câu a nhá
c, Để 2n-1 chia hết cho n+ 1 thì n\(\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)ĐKXĐ \(x\ne1\)
Bạn làm tương tự như 2 câu trên nhá
d,
Để 3n+ 2chia hết cho n-1 thì n\(\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)ĐKXĐ \(x\ne1\)
Rồi lm tương tự
Chúc bạn làm tốt
Ta có: 3n+11 chia hết cho 7-2n => 2(3n+11) chia hết cho 7-2n => 6n+22 chia hết cho 7-2n
7-2n chia hết cho 7-2n => 3(7-2n) chia hết cho 7-2n => 21-6n chia hết cho 7-2n
=> 6n+22+(21-6n) chia hết cho 7-2n
=> 43 chia hết cho 7-2n
=> 7-2n thuộc Ư(43)={1;-1;43;-43}
=> 2n thuộc {6;8;-36;50}
=> n thuộc {3;4;-18;25}
de n+7 chia het cho n+1 thi (n+1+7) chia het cho (n+1)
vi (n+1) chia het cho (n+1)
nen 7chia het cho (n+1)
vay (n+1)thuoc tap hop (1;7)
suy ran thuoc tap hop (0;7)
a,
n+7 chc n+1
=>n+1+6 chc n+1
=>6 chc n+1
=>n+1=1; n+1=-1; n+1=2; n+1=-2; n+1=3; n+1=-3; n+1=6; n+1=-6
=>n=0; n=-2; n=1; n=-3; n=2; n=-4; n=5; n=-7
b,
2n-1 chc n-2
=>2n-4+5 chc n-2
=>2(n-2)+5 chc n-2
=>5 chc n-2
=>n-2=1; n-2=-1; n-2=5; n-2=-5
=>n=3; n=1; n=7; n=-3
n2 + 2n - 7 chia hết cho n + 2
n.(n + 2) - 7 chia hết cho n + 2
Vì (n + 2) chia hết cho n + 2
=> n(n + 2) chia hết cho n + 2
=> -7 chia hết cho n + 2
=> n + 2 thuộc Ư(-7) = {1 ; -1 ; 7 ; -7}
Ta có bảng sau :
n + 2 | 1 | -1 | 7 | -7 |
n | -1 | -3 | 5 | -9 |
a) n có 2 trường hợp
Với n = 2k +1 ( k thuộc Z)
=> (2k+1+6) . (2k+1+7)
= (2k + 7) .( 2k + 8)
= (2k + 7) . 2.(k+4) (chia hết cho 2) ( 1 )
Với n = 2k
=> (2k + 6) . ( 2k + 7)
= 2. (k+3) . ( 2k + 7) ( chia hết cho 2) (2 )
Từ 1 và 2
=> moi n thuoc Z thi
(n+6)x(n+7) chia het cho 2
a) + Nếu n lẻ thì n + 7 chẵn => n + 7 chia hết cho 2 => (n + 6).(n + 7) chia hết cho 2
+ Nếu n chẵn thì n + 6 chẵn => n + 6 chia hết cho 2=> (n + 6).(n + 7) chia hết cho 2
=> (n + 6).(n + 7) luôn chia hết cho 2
Nói ngặn gọn hơn là: Do (n + 6).(n + 7) là tích 2 số tự nhiên liên tiếp nên chia hết cho 2
b) n2 + n + 3
= n.(n + 1) + 3
Vì n.(n + 1) là tích 2 số tự nhiên nên chia hết cho 2; 3 không chia hết cho 2
=> n2 + n + 3 không chia hết cho 2
b)<=>3(n-1)+2 chia hết n-1
=>6 chia hết n-1
=>n-1\(\in\){-1,-2,-3,-6,1,2,3,6}
=>n\(\in\){0,-1,-2,-5,2,3,4,7}