K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2019

\(x^2+y^2\ge2\sqrt{x^2y^2}\ge2xy\)

\(x^2y^2+1\ge2\sqrt{x^2y^2.1}\ge2xy\)

\(\Rightarrow x^2+y^2+x^2.y^2+1\ge2xy+2xy=4xy\)

NV
29 tháng 9 2019

Biến đổi tương đương:

\(\Leftrightarrow4x^2+4y^2+4z^2\ge2x^2+2y^2+2z^2+2xy+2yz+2zx\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(x=y=z\)

29 tháng 9 2019

A no thơ quay nhưng lại không hay:P(Another way)

\(BĐT\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\) (biến đổi tương đương thôi)

\(\Leftrightarrow\frac{3}{4}\left(x-y\right)^2+\frac{1}{4}\left(x+y-2z\right)^2\ge0\) (true)

Đẳng thức xảy ra khi x =y = z

P/s: cách này làm màu thôi :D

NV
30 tháng 9 2019

Biến đổi tương đương:

\(3x^2+3y^2+3z^2\ge x^2+y^2+z^2+2xy+2yz+2zx\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(x=y=z\)

29 tháng 9 2019

BĐT \(\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)(đúng)

Đẳng thức xảy ra khi x =y=z

NV
21 tháng 7 2021

Cả 4 đều không đúng:

A. Sai khi \(\left(a;b;c\right)=\left(0;1;1\right)\) và nhiều trường hợp khác 

A. Sai khi \(\left(a;b\right)=\left(1;1\right)\) và nhiều trường hợp khác

C. Sai khi \(\left(x;y\right)=\left(-1;-1\right)\) và nhiều trường hợp khác

D. Sai khi \(\left(x;y;z\right)=\left(-1;-1;1\right)\) và nhiều trường hợp khác

27 tháng 10 2018

Đáp án D

NV
16 tháng 11 2019

Điều kiện \(a>0\)

\(A=\sqrt[4]{\frac{3}{4a}}.\sqrt[4]{\frac{4a}{3}}.x\sqrt{a-x^4}\le\sqrt[4]{\frac{3}{4a}}\left(-x^4+\sqrt{\frac{4a}{3}}x^2+a\right)\)

\(A\le\sqrt[4]{\frac{3}{4a}}\left[\frac{4a}{3}-\left(x^2-\sqrt{\frac{a}{3}}\right)^2\right]\le\frac{4a}{3}\sqrt[4]{\frac{3}{4a}}\)

Dấu "=" xảy ra khi \(x=\sqrt[4]{\frac{a}{3}}\)