Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : n(n+5)−(n−3)(n+2)=n2+5n−(n2+2n−3n−6)n(n+5)−(n−3)(n+2)=n2+5n−(n2+2n−3n−6)
=n2+5n−n2−2n+3n+6=6n+6=6(n+1)⋮6=n2+5n−n2−2n+3n+6=6n+6=6(n+1)⋮6
⇔6(n+1)⇔6(n+1) chia hết cho 66 với mọi n là số nguyên
⇔n(n+5)−(n−3)(n+2)⇔n(n+5)−(n−3)(n+2) chia hết cho 66 với mọi n là số nguyên
vậy n(n+5)−(n−3)(n+2)n(n+5)−(n−3)(n+2) chia hết cho 66 với mọi n là số nguyên (đpcm)
\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)=n^2+5n-\left(n^2+2n-3n+6\right)\)
\(=n^2+5n-n^2+n+6=6n+6\)
Vì 6n chia hết cho 6;6 chia hết cho 6
=>đpcm
\(=\left(n^2+5n\right)-\left(n^2+2n-3n-6\right)\)
\(=n^2+5n-n^2-2n+3n+6\)
\(=6n+6\)
\(=6\left(n+1\right)\) chia hết cho 6
đề sai : đề thật nè Chứng minh rằng m^3+20m chia hết cho 48
m = 2k thì
(2k)^3 + 20*2k = 8k^3 + 40k = 8k(k^2 + 5)
Cần chứng minh k(k^2 + 5) chia hết cho 6 là xong.
+ nếu k chẵn => k(k^2 + 5) chia hết cho 2
+ nếu k lẻ => k^2 lẻ => k^2 + 5 chẵn => k(k^2 + 5) chia hết cho 2
Vậy k(k^2 + 5) chia hết cho 2
+ nếu k chia hết cho 3 => k(k^2 + 5) chia hết cho 3
+ nếu k chia 3 dư 1 => k^2 + 5 = (3l + 1)^2 + 5 = 9l^2 + 6l + 6 chia hết cho 3
+ nếu k chia 3 dư 2 => k^2 + 5 = (3l + 2)^2 + 5 = 9l^2 + 12l + 9 chia hết cho 3
Vậy k(k^2 + 5) chia hết cho 3
=>dpcm
tk nha bạn
thank you bạn
(^_^)
m3-m=m.(m2-1)=m.(m+1)(m-1)
Vì m;m+1 là 2 số nguyên liên tiếp nên:
m.(m+1) chia hết cho 2
Vì m-1;m;m+1 là 3 số nguyên liên tiếp nên:
m.(m+1).(m-1) chia hết cho 3
=>m.(m+1)(m-1) chia hết cho 6
=>m3-m chia hết cho 6 với mọi m thuộc Z