Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vận tốc tại thời điểm t là \(v\left( t \right) = s'\left( t \right) = 0,5.2\pi \cos \left( {2\pi t + \frac{\pi }{5}} \right) = \pi \cos \left( {2\pi t + \frac{\pi }{5}} \right)\)
Gia tốc tức thời của vật tại thời điểm t là \(a\left( t \right) = v'\left( t \right) = - \pi .2\pi \sin \left( {2\pi t + \frac{\pi }{5}} \right) = - 2{\pi ^2}\sin \left( {2\pi t + \frac{\pi }{5}} \right)\)
Tại thời điểm t = 5 giây, gia tốc của vật là \(a\left( 5 \right) = - 2{\pi ^2}\sin \left( {2\pi .5 + \frac{\pi }{5}} \right) \approx - 11,6\)(cm/s2)
\(v\left(t\right)=s'\left(t\right)=0,8\pi cos\left(0,8\pi t+\dfrac{\pi}{3}\right)\\ a\left(t\right)=v'\left(t\right)=-0,64\pi^2sin\left(0,8\pi t+\dfrac{\pi}{3}\right)\)
Vì:
\(v\left(t\right)=0\\ \Leftrightarrow0,8\pi cos\left(0,8\pi t+\dfrac{\pi}{3}\right)=0\\ \Leftrightarrow0,8\pi t+\dfrac{\pi}{3}=\dfrac{\pi}{2}+k2\pi,k\in Z\\ \Leftrightarrow0,8\pi t=\dfrac{\pi}{6}+k\pi\\ \Leftrightarrow t=\dfrac{5}{24}+\dfrac{5k}{4}\)
Thời điểm vận tốc bằng 0, giá trị tuyệt đối của vật là
\(\left|a\left(\dfrac{5}{25}+\dfrac{5k}{4}\right)\right|=\left|-0,64\pi^2sin\left[0,8\pi\left(\dfrac{5}{24}+\dfrac{5k}{4}\right)+\dfrac{\pi}{3}\right]\right|\\ =0,64\pi^2\left|sin\left(\dfrac{\pi}{2}+k\pi\right)\right|\\ =0,64\pi^2\approx6,32\)
\(\Rightarrow\) Chọn C.
$[v(t) = \frac{ds(t)}{dt} = \frac{d}{dt}(2t^3+4t+1)]$
$[a(t) = \frac{dv(t)}{dt} = \frac{d}{dt}(6t^2 + 4)]$
$[a(t) = 12t]$
Khi (t = 1), ta có:
$[v(1) = 6(1)^2 + 4 = 10 , \text{m/s}]$4
$[a(1) = 12(1) = 12 , \text{m/s}^2]$
Vậy, khi (t = 1), vận tốc của vật là 10 m/s và gia tốc của vật là $12 m/s$
Vận tốc tức thời của chuyển động tại \(t = 2\) là:
\(\begin{array}{l}v\left( 2 \right) = s'\left( 2 \right) = \mathop {\lim }\limits_{t \to 2} \frac{{s\left( t \right) - s\left( 2 \right)}}{{t - 2}} = \mathop {\lim }\limits_{t \to 2} \frac{{\left( {4{t^3} + 6t + 2} \right) - \left( {{{4.2}^3} + 6.2 + 2} \right)}}{{t - 2}}\\ = \mathop {\lim }\limits_{t \to 2} \frac{{4{t^3} + 6t + 2 - 46}}{{t - 2}} = \mathop {\lim }\limits_{t \to 2} \frac{{4{t^3} + 6t - 44}}{{t - 2}} = \mathop {\lim }\limits_{t \to 2} \frac{{2\left( {t - 2} \right)\left( {2{t^2} + 4t + 11} \right)}}{{t - 2}}\\ = \mathop {\lim }\limits_{t \to 2} 2\left( {2{t^2} + 4t + 11} \right) = 2\left( {{{2.2}^2} + 4.2 + 11} \right) = 54\end{array}\)
Vậy vận tốc tức thời của chuyển động lúc \(t = 2\) là: \(v\left( 2 \right) = 54\left( {m/s} \right)\)
\(v\left(t\right)=s'\left(t\right)=4\left[cos\left(2\pi t-\dfrac{\pi}{8}\right)\right]'\\ =-4\left(2\pi t-\dfrac{\pi}{8}\right)'sin\left(2\pi t-\dfrac{\pi}{8}\right)\\ =-8\pi sin\left(2\pi t-\dfrac{\pi}{8}\right)\)
Vận tốc của vật khi t = 5s là \(v\left(5\right)=-8\pi sin\left(10\pi-\dfrac{\pi}{8}\right)\approx9,6\left(m/s\right)\)
a)
Vận tốc rơi của viên sỏi lúc `t=2`:
$v(2) = 9,8 \cdot 2 = 19.6 , \text{m/s}$
b)
Khi viên sỏi chạm đất, quãng đường rơi sẽ bằng độ cao ban đầu:
$s(t) = 4.9t^2 = 44.1$
Giải phương trình trên, ta có:
$t^2 = \frac{44.1}{4.9}$
$t \approx 3,0 \text{giây}$
$v(3.0) = 9,8 \cdot 3,0 = 29,4 \text{m/s}$
Vậy vận tốc của viên sỏi khi chạm đất là $29,4 \text{m/s}$.
a: v(t)=s'(t)=4,9*2t=9,8t
Khi t=2 thì v(2)=9,8*2=19,6(m/s)
b: Quãng đường đi được là 44,1m
=>4,9t^2=44,1
=>t=3
Khi t=3 thì v(3)=9,8*3=29,4(m/s)
a)
\(\begin{array}{l}\begin{array}{*{20}{l}}{\left[ {5;5,1} \right]}\end{array}:t = 5,1 \Rightarrow \frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}} = \frac{{4,9.5,{1^2} - 4,{{9.5}^2}}}{{5,1 - 5}} = 49,49\\\begin{array}{*{20}{l}}{\left[ {5;5,05} \right]}\end{array}:t = 5,05 \Rightarrow \frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}} = \frac{{4,9.5,{{05}^2} - 4,{{9.5}^2}}}{{5,05 - 5}} = 49,245\\\begin{array}{*{20}{l}}{\left[ {5;5,01} \right]}\end{array}:t = 5,01 \Rightarrow \frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}} = \frac{{4,9.5,{{01}^2} - 4,{{9.5}^2}}}{{5,01 - 5}} = 49,049\\\begin{array}{*{20}{l}}{\left[ {5;5,001} \right]}\end{array}:t = 5,001 \Rightarrow \frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}} = \frac{{4,9.5,{{001}^2} - 4,{{9.5}^2}}}{{5,001 - 5}} = 49,0049\\\begin{array}{*{20}{l}}{\left[ {4,999;5} \right]}\end{array}:t = 4,999 \Rightarrow \frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}} = \frac{{4,9.4,{{999}^2} - 4,{{9.5}^2}}}{{4,999 - 5}} = 48,9951\\\begin{array}{*{20}{l}}{\left[ {4,99;5} \right]}\end{array}:t = 4,99 \Rightarrow \frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}} = \frac{{4,9.4,{{99}^2} - 4,{{9.5}^2}}}{{4,99 - 5}} = 48,951\end{array}\)
Ta thấy: \(\frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}}\) càng gần 49 khi \(t\) càng gần 5.
b)
\(\begin{array}{l}\mathop {\lim }\limits_{t \to 5} \frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}} = \mathop {\lim }\limits_{t \to 5} \frac{{4,9{t^2} - 4,{{9.5}^2}}}{{t - 5}} = \mathop {\lim }\limits_{t \to 5} \frac{{4,9\left( {{t^2} - {5^2}} \right)}}{{t - 5}} = \mathop {\lim }\limits_{t \to 5} \frac{{4,9\left( {t - 5} \right)\left( {t + 5} \right)}}{{t - 5}}\\ = \mathop {\lim }\limits_{t \to 5} 4,9\left( {t + 5} \right) = 4,9\left( {5 + 5} \right) = 49\end{array}\)
c)
\(\begin{array}{l}\mathop {\lim }\limits_{t \to {t_0}} \frac{{s\left( t \right) - s\left( {{t_0}} \right)}}{{t - {t_0}}} = \mathop {\lim }\limits_{t \to 5} \frac{{4,9{t^2} - 4,9.t_0^2}}{{t - {t_0}}} = \mathop {\lim }\limits_{t \to 5} \frac{{4,9\left( {{t^2} - t_0^2} \right)}}{{t - t_0^2}} = \mathop {\lim }\limits_{t \to 5} \frac{{4,9\left( {t - {t_0}} \right)\left( {t + {t_0}} \right)}}{{t - {t_0}}}\\ = \mathop {\lim }\limits_{t \to 5} 4,9\left( {t + {t_0}} \right) = 4,9\left( {{t_0} + {t_0}} \right) = 9,8{t_0}\end{array}\)
\(a,v\left(t\right)=s'\left(t\right)=3t^2-12t-9\)
Vận tốc của vật tại thời điểm t = 2s là: \(v\left(2\right)=3\cdot2^2-12\cdot2+9=-3\left(m/s\right)\)
Vận tốc của vật tại thời điểm t = 4s là: \(v\left(4\right)=3\cdot4^2-12\cdot4+9=9\left(m/s\right)\)
b, Khi vật đứng yên, ta có:
\(v\left(t\right)=0\Leftrightarrow3t^2-12t+9=0\Leftrightarrow\left[{}\begin{matrix}t=3\\t=1\end{matrix}\right.\)
c, Ta có \(a\left(t\right)=s"\left(t\right)=6t-12\)
Gia tốc của vật tại thời điểm t = 4s là \(a\left(4\right)=6\cdot4-12=12\left(m/s^2\right)\)
d, Ta có: Khi t = 1s hoặc t = 3s thì vật đứng yên.
Như vậy, ta cần tính riêng quãng đường vật đi được từng khoảng thời gian \(\left[0;1\right],\left[1;3\right],\left[3;5\right]\)
Từ thời điểm t = 0s đến thời điểm t = 1s, vật đi được quãng đường là:
\(\left|f\left(1\right)-f\left(0\right)\right|=\left|4-0\right|=4m\)
Từ thời điểm t = 1s đến thời điểm t = 3s, vật đi được quãng đường là:
\(\left|f\left(3\right)-f\left(1\right)\right|=\left|0-4\right|=4m\)
Từ thời điểm t = 3s đến thời điểm t = 5s, vật đi được quãng đường là:
\(\left|f\left(5\right)-f\left(3\right)\right|=\left|20-0\right|=20m\)
Tổng quãng đường vật đi được trong 5s đầu tiên là: 28m
e,Xét \(a\left(t\right)=0\Leftrightarrow t=2\)
Với \(t\in[0;2)\) thì gia tốc âm, tức là vật giảm tốc.
Với \(t\in(2;5]\) thì gia tốc dương, tức là vật tăng tốc.
Vận tốc: v(t) = S’(t) = (t3 – 3t2 – 9t)' = 3t2 – 6t – 9.
Gia tốc : a(t) = v’(t) = (3t2 – 6t – 9)’ = 6t – 6.
a) Khi t = 2s, v(2) = 3.22 – 6.2 – 9 = -9 (m/s).
b) Khi t = 3s, a(3) = 6.3 – 6 = 12 (m/s2).
c) v(t) = 0 ⇔ 3t2 – 6t – 9 = 0 ⇔ t = 3 (vì t > 0).
Khi đó a(3) = 12 m/s2.
d) a(t) = 0 ⇔ 6t – 6 = 0 ⇔ t = 1.
Khi đó v(1) = 3.12 – 6.1 – 9 = -12 (m/s).
Ta có: \(v\left(t\right)=s'\left(t\right)=0,5\cdot\left(4\pi t\right)'cos\left(4\pi t\right)=2\pi cos\left(4\pi t\right)\)
Vì \(-1\le cos\left(4\pi t\right)\le1\Rightarrow-2\pi\le2\pi cos\left(4\pi t\right)\le2\Leftrightarrow-2\pi\le v\left(t\right)\le2\pi\)
Vậy vận tốc cực đại của hạt là \(2\pi cm/s\)