Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (5n+7).(4n+6) = 2.(5n+7).(2n+3)
Vậy (5n+7).(4n+6) chia hết cho 2 với n thuộc N
b)(8n+1).(6n+5)
ta có
8n là số chẳn
=>8n+1 là số lẽ
hay 8n+1 không chia hết cho 2
lại có:
6n là số chẵn
=>6n+5 là số lẽ
hay 6n+5 không chia hết cho 2
suy ra (8n+1).(6n+5) không chia hêt cho 2 với n thuộc N
a)Ta có:(5n+7)(4n+6)=2.(5n+7)(2n+3) chia hết cho 2 với mọi n thuộc N(đpcm)
b)Do 8n là số chẵn với mọi n thuộc N=>8n+1 là số lẻ
Tương tự 6n+5 cũng là số lẻ
Mà tích 2 số lẻ là 1 số lẻ
Do tích 2 số lẻ không chia hết cho 2 nên
(8n+1)(6n+5) không chia hết cho 2 với mọi n thuộc N
1. Đề sai với $n=1$.
2.
Nếu $n$ chẵn thì hiển nhiên $n(n+5)\vdots 2$
Nếu $n$ lẻ thì $n+5$ chẵn $\Rightarrow n(n+5)\vdots 2$
Vậy $n(n+5)\vdots 2$ với mọi $n\in\mathbb{N}$
3.
Vì $n+7, n+8$ là 2 số tự nhiên liên tiếp nên trong 2 số này sẽ có 1 số chẵn và 1 số lẻ.
$\Rightarrow (n+7)(n+8)\vdots 2$
$\Rightarrow (n+3)(n+7)(n+8)\vdots 2(1)$
Lại có:
Nếu $n\vdots 3\Rightarrow n+3\vdots 3\Rightarrow (n+3)(n+7)(n+8)\vdots 3$
Nếu $n$ chia 3 dư 1 thì $n+8\vdots 3\Rightarrow (n+3)(n+7)(n+8)\vdots 3$
Nếu $n$ chia 3 dư 2 thì $n+7\vdots 3\Rightarrow (n+3)(n+7)(n+8)\vdots 3$
Vậy $(n+3)(n+7)(n+8)\vdots 3(2)$
Từ $(1); (2)$ mà $(2,3)=1$ nên $(n+3)(n+7)(n+8)\vdots 6$
THÔI TỰ ĐI MÀ LÀM NHÌN THẤY LÀ ĐÃ GIẬT MÌNH RỒI DÀI DẰNG DẶC AI MÀ LÀM HẾT ĐƯỢC CÁC BẠN NHỈ !
1 /
B = 15 + 17 - 16
B = 16
mà 16 không chia hết cho 12 , nên không cần chứng minh cũng ra
2 /
a ) N = 1 đó
b ) N = 1 đó
cách dễ nhất là cứ cho N = 1 , vì bao nhiêu lần 1 thực hiện phép tính chia thì chắng chia hết cho 1
còn lại tương tự nhé !
mình còn làm violympic nữa
Vì n là số tự nhiên nên n có dạng:
n=2k hoặc n= 2k+1 ( k ∈N∈N)
Với n=2k thì: (n+3)(n+12) = (2k+3)(2k+12)
= 2(2k+3)(k+6)⋮⋮2
⇒⇒(n+3)(n+12) ⋮2⋮2
Với n = 2k+1 thì: (n+3)(n+12)= (2k+1+3)(2k+1+12)
= (2k+4)(2k+13)
= 2(k+2)(2k+13)⋮2⋮2
⇒⇒ (n+3)(n+12)⋮2⋮2
Vậy (n+3)(n+12) là số chia hết cho 2 với mọi số tự nhiên n
a) ta thấy 4n đã chia hết cho n rồi => muốn biểu thức chia hết cho n <=> 5 chia hết cho n <=> n thuộc Ư(5) <=> n thuộc (+-1;+-5)
b) \(n^2-7=n^2-9+2=\left(n-3\right)\left(n+3\right)+2\). ta thấy (n-3)(n+3) đã chia hết cho n+3 rồi => muốn biểu thức chia hết cho n+3 <=> 2 chia hết cho n+3 <=> n+3 thuộc Ư(2)<=> n+3 thuộc (+-1; +-2)
đến đây lập bảng tìm n nha. kết quả: n thuộc (-2;-4;-1;-5)
c) dễ thấy n+3 chia cho n^2-7 dư n+3 => muốn chia hết thì n+3=0 <=> n=-3
Bài 1:
a,\(A=3+3^2+3^3+...+3^{2010}\)
\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)
\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)
\(=3.40+...+3^{2007}.40\)
\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)
Vì A chia hết cho 40 nên chữ số tận cùng của A là 0
b,\(A=3+3^2+3^3+...+3^{2010}\)
\(3A=3^2+3^3+...+3^{2011}\)
\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)
\(2A=3^{2011}-3\)
\(2A+3=3^{2011}\)
Vậy 2A+3 là 1 lũy thừa của 3
Ta có thể suy luận như sau:
Vì n + 6 chia hết cho n nên suy ra 6 chia hết cho n (vì n chia hết cho n nên bắt buộc 6 phải chia hết cho n)--> n = 1, 2, 3, 6.
(n - 2) + 7 chia hết cho n - 2 nên suy ra 7 chia hết cho n - 2 --> n - 2 = 1 hoặc n - 2 = 7 --> n = 3 hoặc n = 9
n + 15 chia hết cho n + 4. Tương tự ta phân tích ra thành (n + 4) + 11 chia hết cho n + 4 --> 11 chia hết cho n + 4 --> n = 7
Những câu sau e làm tương tự nhé. Bài toán chung cho dạng này là:
a + b chia hết cho c nếu a chia hết cho c thì b phải chia hết cho c. Từ đó ý tưởng của việc giải các bài toán trên là biến đổi vế trái về dạng a + b trong đó a chia hết cho c. Chúc em học càng ngày càng giỏi nhé.
2,
+ n chẵn
=> n(n+5) chẵn
=> n(n+5) chia hết cho 2
+ n lẻ
Mà 5 lẻ
=> n+5 chẵn => chia hết cho 2
=> n(n+5) chia hết cho 2
KL: n(n+5) chia hết cho 2 vơi mọi n thuộc N
3,
A = n2+n+1 = n(n+1)+1
a,
+ Nếu n chẵn
=> n(n+1) chẵn
=> n(n+1) lẻ => ko chia hết cho 2
+ Nếu n lẻ
Mà 1 lẻ
=> n+1 chẵn
=> n(n+1) chẵn
=> n(n+1)+1 lẻ => ko chia hết cho 2
KL: A không chia hết cho 2 với mọi n thuộc N (Đpcm)
b, + Nếu n chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
+ Nếu n chia 5 dư 1
=> n+1 chia 5 dư 2
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 2
=> n+1 chia 5 dư 3
=> n(n+1) chia 5 dư 1
=> n(n+1)+1 chia 5 dư 2
+ Nếu n chia 5 dư 3
=> n+1 chia 5 dư 4
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 4
=> n+1 chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
KL: A không chia hết cho 5 với mọi n thuộc N (Đpcm)
1.\(\frac{2n-7}{n-7}=\frac{2n-14}{n-7}+\frac{7}{n-7}=2+\frac{7}{n-7}\)
để 2n-7 chia hết cho n-7 thì n-7 phải thuộc ước của 7
suy ra n-7 thuộc -7;-1;1;7
suy ra n thuộc 0;6;8;14
2.\(\frac{3n+4}{n+5}=\frac{3n+15}{n+5}+\frac{-11}{n+5}=3-\frac{11}{n+5}\)
để 3n+4 chia hết cho n+5 thì n+5 phải thuộc ước của 11
suy ra n+5 thuộc -11;-1;1;11
suy ra n thuộc -16;-6;-4;6
nhớ k cho mình nhé ^^
mình ấn nhầm cho dũng rồi , cách làm như sau nha:
1, ĐK: n-7 khác 0 suy ra n khác 7
ta có 2n-7= 2n-14+7=2.(n-7) +7
vì 2(n-7) chia hết cho n-7 nên để 2n-7 chia hết cho n-7 thì n-7 phải thuộc ước của 7 ước của 7 là -1,1.7,-7
mà n khác 7 nên ta có
n-7=1 suy ra n=8
n-7=-7 suy ra n= 0
n-7=-1 suy ra n= 6
ở ý 2 cũng làm tương tự nhé chỉ có ĐK là n+5 khác 0 suy ra n khác -5
3n +4= 3n+15-10 = 3(n+5)-10 n thuộc ước của 10 và phải khác -5 nhé. mình nha mình thử rồi đúng mà, chúc bạn thành công!
tk nha nha nha cảm ơn !
Lượm thôi ko biết có sai hay ko nữa:
a.
n(n + 5) - (n - 3)(n + 2)
= n2 + 5n - n2 - 2n + 3n + 6
= (n2 - n2) + (5n - 2n + 3n) + 6
= 6n + 6
= 6(n + 1)
Vậy n(n + 5) - (n - 3)(n + 2) chia hết cho 6.
b.
(n - 1)(n + 1) - (n - 7)(n - 5)
= n2 + n - n - 1 - n2 + 5n + 7n - 35
= (n2 - n2) + (n - n + 5n + 7n) - (1 + 35)
= 12n - 36
= 12(n - 3)
Vậy (n - 1)(n + 1) - (n - 7)(n - 5) chia hết cho 12.
a) n(n + 5) - (n - 3)(n + 2)
= n2 + 5n - n2 - 2n +3n +6
= 6n + 6
= 6(n + 1) \(⋮\)6
b) (n - 1)(n + 1) - (n - 5)(n - 7)
= n2 - 1 - n2 +12n - 35
= 12n - 36
= 12(n - 3) \(⋮\)12