Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có:
\(\overline{ab}+\overline{ba}=10a+b+10b+a=11\left(a+b\right)\)
=> ab + ba chia hết cho 11(đpcm)
b, Ta có:
\(\overline{ab}-\overline{ba}=10a+b-10b-a=9\left(a-b\right)\)
=> ab - ba chia hết cho 9 (a > b)(đpcm)
Chúc bạn học tốt!!!
a/ \(\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b=11\left(a+b\right)⋮11\)
b/ \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\)
c/ \(\overline{abba}=1001a+110b=11.91.a+11.10.b=11\left(91a+10b\right)⋮11\)
Để mình giải giúp ha !!
ta có 20a20a20a=20a20a . 1000 +20a =(20a . 1000+20a)1000+20a
=1001 . 20a . 1000 + 20a
Theo đề bài 20a20a20a chia hết cho 7 , mà 1001 chia hết cho 7 nên => 20a chia hết cho 7
nên (4 + a) chia hết cho 7 . Vậy a = 3
b)ta co:ab+ba=(a.10+b)+(b.10+a)=11a+11b
suy ra ab+ba chia het cho 11
a) Theo bài ra ta có:
abcabc = 1000abc + abc
= ( 1000 +1)abc
=1001abc.
Vì : 1001 chia hết cho 11 => abcabc chia hết cho 11.
1001 chia hết cho 7 => abcabc chia hết cho 7.
1001 chia hết cho 13 => abcabc chia hết cho 13.
=> Điều phải chứng minh.
b) Ta có:
ab+ba= 10a+b+10b+a=11a+11b=11(a+b) chia hết cho 11.
=> Đpcm.
c)Giả sử 9a+7b chia hết cho 11,ta có:
9(2a+4b)-2(9a+7b)= 18a+36b-(18a+14b)=18a+36b-18a-14b=36b-14b=(36-14)b=22b
Vì 22 chia hết cho 11 => 22b chia hết cho 11.
Mà 9a+7b chia hết cho 11 => 2(9a+7b) chia hết cho 11.
=> 9(2a+4b) chia hết cho 11.
Vì UWCLN(9;11)=1 => 2a+4b chia hết cho 11.
=> Đpcm.
k tớ nha <3
Ta có :
abcabc = 1000abc + abc
= 1001 . abc
= 7 . 11 . 13 . abc chia hết cho 7 ; 11 ; 13
a) ab - ba = a .10+b - (b .10+a)
= a .10+b - b .10 - a
=( a .10 - a)-(b.10-b)
= a.9-b.9
= 9.(a-b) chia het cho 9
b) abcd = ab .100 +cd
= ab .99 +ab+cd
= ab .11 . 9 +(ab+cd)
vì ab .11 .9 chia hết cho 11 nên nếu ab+cd chia hết cho 11 thì abcd chia hết cho 11
b)Ta có:abcd=ab.100+cd
=ab.99+ab+cd
=ab.11.99+(ab+cd)
Vì 11\(⋮\)11=>ab.11.9 chia hết cho 11
=>(ab+cd)chia hết cho 11
Vậy abcd chia hết cho 11
k mik nha
a.Ta có:ab+ba=a.10+b + b.10+a=a(10+1) + b(10 +1) = a.11+b.11=11(a+b)
=> ab+ba chia hết cho 11
b.Ta có:ba-ab=(b.10+a)-(a.10+b)=b.10 + a - a.10-b=b(10-1) - a(10-1)=b.9 - a.9=9(b-a)
=>ba-ab chia hết cho 9
Bài 1 :
abc chia hết cho 27
\(\Rightarrow\)100a + 10b + c chia hết cho 27
\(\Rightarrow\)10(100a + 10b + c) chia hết cho 27
\(\Rightarrow\)1000a + 100b + 10c chia hết cho 27
\(\Rightarrow\)999a + (100b + 10c + a) chia hết cho 27
Mà 999a chia hết cho 27
Vậy 100b + 10c + a = bca chia hết cho 27
Bài 2 :
a) ab + ba = 10a + b + 10b + a = (10a + a) + (10b + b) = 11a + 11b = 11(a + b) chia hết cho 11
b)Ta thấy ab và ba có tổng các chữ số như nhau nên có cùng số dư khi chia cho 9, do đó hiệu của chúng phải chia hết cho 9
abc chia hết cho 27
=100a+10b+10c chia hết cho 27
=10(100a+10b+c) chia hết cho 27
=1000a+100b+10c chia hết cho 27
=999a+(100b+10c+a) chia hết cho 27
Mà 999a chia hết cho 27
Vậy 100b+10c+a=bca chia hết cho 27
a) Ta có: ab=a.10+b
ba=10b+a
ab=ba=10a+b+10b+a=11a+11b=11(a+b)
=> ab+ba chia hết cho 11
a, ta có :ab=a.10+b
ba=b.10+a
ab=ba=10.a+b+10.b+a=11a+11b=11.(a+b)
=>ab+ba chia het cho 11