Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: A(x)=0
=>-4x+7=0
=>4x=7
=>x=7/4
b: B(x)=0
=>x(x+2)=0
=>x=0 hoặc x=-2
c: C(x)=0
=>1/2-căn x=0
=>căn x=1/2
=>x=1/4
d: D(x)=0
=>2x^2-5=0
=>x^2=5/2
=>\(x=\pm\dfrac{\sqrt{10}}{2}\)
\(a.\)\(x^2+3x=0\)
\(\Leftrightarrow x\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-3\end{cases}}\)
\(b.\)\(5x^3-4x=0\)
\(\Leftrightarrow x\left(5x^2-4\right)=0\)
\(c.\)\(\left(x+2\right)\left(7-4x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\7-4x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{7}{4}\end{cases}}}\)
\(d.\)\(2x\left(x+1\right)-x-1=0\)
\(\Leftrightarrow2x\left(x+1\right)-\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{1}{2}\end{cases}}}\)
a) Đặt A(x)=0
\(\Leftrightarrow4x-1=0\)
\(\Leftrightarrow4x=1\)
hay \(x=\dfrac{1}{4}\)
b) Đặt B(x)=0
\(\Leftrightarrow2x^2-8=0\)
\(\Leftrightarrow2x^2=8\)
\(\Leftrightarrow x^2=4\)
hay \(x\in\left\{2;-2\right\}\)
a) Ta có x2 \(\ge\)0 với mọi x
=> x2 + 1 \(\ge\)1 > 0
=> A(x) không có nghiệm)
b) 2y4 \(\ge\)0 với mọi x
=> 2y4 + 5 \(\ge\)5 > 0
=> B(x) không có nghiệm
c) Ta có C(x) = x2 + 2x + 2 = x2 + 2x + 1 + 1 = (x2 + x) + (x + 1) + 1 = x(x + 1) + (x + 1) + 1 = (x + 1)(x + 1) + 1 = (x + 1)2 + 1
=> C(x) = (x + 1)2 + 1 \(\ge\)1 > 0
=> C(x) không có ngiệm
d) Ta có -(x - 5)2 - 5 = -[(x - 5)2 + 5]
Vì (x - 5)2 \(\ge\)0 với mọi x
=> (x - 5)2 + 5 \(\ge\)5 với mọi x
=> D(x) = -[(x - 5)2 + 5] \(\le\)5 với mọi x
=> D(x) vô nghiệm
e) Ta có E(x) = -7 - |x + 3| = -(7 + |x + 3|)
Vì |x + 3| \(\ge\)0 với mọi x
=> |x + 3| + 7 \(\ge\)7
=> -(|x + 3| + 7) \(\le\)-7 < 0
=> E(x) vô nghiệm
Ta có G(x) = (x - 4)2 + (x + 5)2
= x2 - 8x + 16 + x2 + 10x + 25
= 2x2 + 2x + 9
= (x2 + 2x + 1) + x2 + 8
= (x + 1)2 + x2 + 8 \(\ge\)8 > 0 với mọi x
=> G(x) vô nghiệm
Bài 1 ( a )
\(A_x=-4x^5-x^3+4x^2+5x+9+4x^5-6x^2-2\)
\(=-x^3-2x^2+5x-7\)
\(B_x=-3x^4-2x^3+10x^2-8x+5x^3-7-2x^3+8x\)
\(=-3x^4+x^3+10x^2-7\)
Bài 1 ( b )
\(P_x=\left(-x^3-2x^2+5x-7\right)+\left(3x^4+x^3+10x-7\right)\)
\(=-x^3-2x^2+5x-7+3x^4+x^3+10x-7\)
\(=3x^4-2x^2+15x-14\)
\(Q_x=\left(-x^3-2x^2+5x-7\right)-\left(3x^4+x^3+10x-7\right)\)
\(=-x^3-2x^2+5x-7-3x^4-x^3-10x+7\)
\(=-3x^4-2x^3-5x\)
a)\(f\left(x\right)=x^4+2x^2+1\)\(=\left(x^2+1\right)^2\)
Dễ thấy: \(x^2\ge0\Rightarrow x^2+1\ge1\)
\(\Rightarrow\left(x^2+1\right)^2\ge1>0\) (vô nghiệm)
b)\(h\left(x\right)=x^2+2x+3\)
\(=x^2+2x+1+2=\left(x+1\right)^2+2\)
Dễ thấy: \(\left(x+1\right)^2+2\ge2>0\)
(vô nghiệm)
c)\(g\left(x\right)=x^2+6x+10\)
\(=x^2+6x+9+1=\left(x+3\right)^2+1\)
Dễ thấy:\(\left(x+3\right)^2+1\ge1>0\)
(vô nghiệm)
a) f(x) = x4 + 2x2 + 1
Ta thấy : x4 \(\ge\) 0 ; 2x2 \(\ge\) 0 ; 1 > 0
=> f(x) không có ngiệm
b) h(x) = x2 + 2x + 3
=> h(x) = (x + 1)2 - 1 + 3
=> h(x) = (x + 1)2 + 2
Vì (x + 1)2 \(\ge\) 0 ; 2 > 0
=> h(x) không có ngiệm
c) g(x) = x2 + 6x + 10
=> g(x) = (x + 3)2 - 9 + 10
=> g(x) = (x + 3)2 + 1
Vì (x + 3)2 \(\ge\) 0 ; 1 > 0
=> g(x) không có ngiệm