Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
...............
\(\dfrac{1}{8^2}< \dfrac{1}{7.8}\)
=> B < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+....+\dfrac{1}{7.8}\)
B < \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{7}-\dfrac{1}{8}\)
B < \(1-\dfrac{1}{8}< 1\) (Do \(\dfrac{1}{8}>0\))
Vậy.....
1:
\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}\)
...
\(\dfrac{1}{8^2}< \dfrac{1}{7\cdot8}\)
=>\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{8^2}< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+..+\dfrac{1}{7\cdot8}\)
=>\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}=\dfrac{7}{8}< 1\)
a)
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{30^2}\\ < \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{29.30}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{29}-\dfrac{1}{30}\\ =1-\dfrac{1}{30}=\dfrac{29}{30}< 1\left(dpcm\right)\)
b)
\(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{99}+\dfrac{1}{100}=\dfrac{1}{10}+\left(\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)\\ >\dfrac{1}{10}+\dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}=\dfrac{1}{10}+\dfrac{90}{100}\\ =\dfrac{110}{100}>1\left(đpcm\right).\)
c)
\(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+...+\dfrac{1}{17}\\ =\left(\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{9}\right)+\left(\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{17}\right)\\ < \dfrac{1}{5}.5+\dfrac{1}{8}.8=1+1=2\left(đpcm\right)\)
d) tương tự câu 1
b\()\)
1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2.3 + 1/3.4 +... + 1/99.100
1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2 - 1/3 + 1/3 -1/4 +... + 1/99 + 1/100
1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2 - 1/100
1/2^2 + 1/3^2 +... + 1/100^2 < 3/4 - 1/100 < 3/4
Tương tự như vậy với câu a\()\)
1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2.3 + 1/3.4 +... + 1/99.100
1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2 - 1/3 + 1/3 -1/4 +... + 1/99 + 1/100
1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2 - 1/100
1/2^2 + 1/3^2 +... + 1/100^2 < 3/4 - 1/100 < 1/2
Lời giải:
$B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{7.8}$
$B< \frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{8-7}{7.8}$
$B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}$
$B< 1-\frac{1}{8}$
Mà $1-\frac{1}{8}< 1$ nên $B< 1$ (đpcm)
\(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+....+\dfrac{1}{8^2}< 1\)
\(\dfrac{1}{2^2}< \dfrac{1}{2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}\)
.......
\(\dfrac{1}{8^2}< \dfrac{1}{7\cdot8}\)
\(=>B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+....+\dfrac{1}{8^2}< \dfrac{1}{2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+.....+\dfrac{1}{7\cdot8}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{4}+.....+\dfrac{1}{7}-\dfrac{1}{8}=1-\dfrac{1}{8}< 1\)
\(=>B< 1\)
Lời giải:
$P< \frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+....+\frac{1}{199.201}+\frac{1}{201.203}$
$P< \frac{1}{2}(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+....+\frac{2}{199.201}+\frac{2}{201.203})$
$P< \frac{1}{2}(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{199}-\frac{1}{201}+\frac{1}{201}-\frac{1}{203})$
$P< \frac{1}{2}(\frac{1}{3}-\frac{1}{203})< \frac{1}{2}.\frac{1}{3}=\frac{1}{6}$
a: \(M=\dfrac{6}{5}+\dfrac{3}{2}\left(\dfrac{2}{5\cdot7}+...+\dfrac{2}{97\cdot99}+\dfrac{2}{99\cdot101}\right)\)
\(=\dfrac{6}{5}+\dfrac{3}{2}\left(\dfrac{1}{5}-\dfrac{1}{101}\right)\)
\(=\dfrac{6}{5}+\dfrac{3}{10}-\dfrac{3}{202}=\dfrac{150}{101}\)
b:
1/4^2 + 1/5^2 +... + 1/100^2 < 1/3.4 + 1/4.5 +...+ 1/99.100
A=1/3 - 1/4 + 1/4 - 1/5 +...+ 1/99 - 1/100
=1/3 - 1/100 < 1/3
\(B< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{7.8}\)
\(B< 1-\dfrac{1}{8}=\dfrac{7}{8}< 1\)
mink nhanh nhất đó bạn,
ta có :
\(\dfrac{1}{2^2}< \dfrac{1}{1\times2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2\times3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3\times4}\)
. . . . . . .
\(\dfrac{1}{8^2}< \dfrac{1}{7\times8}\)
_________________________________
\(\Rightarrow\)\(B< \)\(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{7.8}\right)\)
\(\Rightarrow B< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{7}-\dfrac{1}{8}\)
\(\Rightarrow B< 1-\dfrac{1}{8}\)
\(\Rightarrow B< 1\)
\(\Rightarrowđpcm\)