Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét biểu thức :
10x - y = 10(a + 4b) - (10a + b) = 10a + 40b - 10a - b = 39b.
Như vậy 10x - y ⋮ 13.
Do x ⋮ 13 nên 10x ⋮ 13. Suy ra y ⋮ 13.
Ta có:\(10a+b+3\left(a+4b\right)\)
\(=10a+b+3a+12b\)
\(=13a+13b\) chia hết cho 13
Mà 3(a+4b) chia hết cho 13 nên 10a+b chia hết cho 13
Gọi (a+4b) là a,(10a+b) là b
Ta có:3a=3.(a+4b)=(3a+12b) chia hết cho 13
3a+b=(3a+12b+10a+b)=(13a+13b) chia hết cho 13
Mà (3a+12b) chia hết cho 13
=> (10a+b) chia hết cho 13
Giả sử \(\left(4a+2b\right)⋮3\)
\(\Rightarrow\left(4a+2b\right)+\left(2a+7b\right)⋮3\)
\(\Rightarrow\left(6a+9b\right)⋮3\) (đúng)
=> Giả sử đúng
Vậy \(\left(4a+2b\right)⋮3\)
Giả sử (4a+2b)⋮3
⇒(4a+2b)+(2a+7b)⋮3
⇒(6a+9b)⋮3 (đúng)
=> Giả sử đúng
Ai trên 10 điểm hỏi đáp thì mình nha mình đang cần gấp chỉ còn 59 điểm là tròn rồi mong các bạn hỗ trợ mình sẽ đền bù xứng đáng
105+35=100000+35=100035
Vì tổng các chữ số của 105+35 là: 1+0+0+0+3+5=9 chia hết cho 9 nên 105+35 chia hết cho 9 (1)
Vì 105+35 có tận cùng là 5 nên 105+35 chia hết cho 5 (2)
Từ (1) và (2) ta có điều phải chứng minh
b, 105+98=100000+98=100098
Vì 105+98 có tận cùng là 8 nên 105+98 chia hết cho 2 (1)
Vì tổng các chữ số của 105+98 là: 1+0+0+0+9+8=18 chia hết cho 9 nên 105+98 chia hết cho 9 (2)
Từ (1) và (2) ta có điều phải chứng minh
a) 105 + 35 = 100000 + 35 = 100035 chia hết cho 9 và 5.
b) 105 + 98 = 100000 + 98 = 100098 chia hết cho 2 và 9.
1)
gọi ba số tự nhiên liên tiếp là a;a+1;a+2
ta có :
a+(a+1)+(a+2)=3.a+3=3.(a+1) chia hết cho 3
=>dpcm
2) gọi 5 số tự nhiên liên tiếp đó là a;a+1;a+2a;a+3;a+4
ta có :a+(a+1)+(a+2)+(a+3)+(a+4)=5a+10=5a+2.5=5(a+2) chia hết cho 5
=>dpcm
Xét tổng : a + 4b + 4a + b = 5a + 5b = 5 ( a + b ) chia hết cho 5
Mặt khác ta có a + 4b chia hết cho 5 nên hiển nhiên 4a + b chia hết cho 5
=> đpcm
Có : \(\hept{\begin{cases}a,b\in N\\5⋮5\end{cases}}\Rightarrow5a,5b⋮5\)
=> ( 5a + 5b ) \(⋮\)5 => ( 4a + a + 4b + b ) \(⋮\)5 => ( a + 4b ) + ( 4a+b ) \(⋮\)5
*Nếu ( a + 4b ) \(⋮\)5
( a + 4b ) + ( 4a+b ) \(⋮\)5 => ( 4a + b ) \(⋮\)5
*Nếu ( 4a + b ) \(⋮\)5
( a + 4b ) + ( 4a+b ) \(⋮\)5 => ( a + 4b) \(⋮\)5
Vậy ( a + 4b ) \(⋮\)5 <=> (4a + b ) \(⋮\)5