Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có :
527 = 53.9 = ( 53 )9 = 1259 < 1289 = 27.9 = ( 27 ) 9 = 263
=> 527 < 263 ( 1 )
lại có : 263 < 264 = 216.4 = ( 216 )4 = 655364 < 781254 = 57.4 = ( 57 ) 4 = 528
=> 263 < 264 < 528
=> 263 < 528 ( 2 )
từ ( 1 ) và ( 2 ) ta thấy :
527 < 263 < 528
( đpcm )
Nguyễn Đức Minh Triết ơi, hãy nhập câu hỏi của bạn vào đây...
Ta có: \(5^{27}=\left(5^3\right)^9=125^9\)
\(2^{63}=\left(2^7\right)^9=128^9\)
Mà \(128^9>125^9\)
=> \(5^{27}<2^{63}\) (1)
Ta có: \(5^{28}=\left(5^4\right)^7=625^7\)
\(2^{63}=\left(2^9\right)^7=512^7\)
Mà \(512^7<625^7\)
=> \(2^{63}<5^{28}\) (2)
Từ (1) và (2):
=> \(5^{27}<2^{63}<5^{28}\left(đpcm\right)\)
527=(53)9=1259<1289=(27)9=263 (1)
263=(29)7=5127<6257=(54)7=528 (2)
từ (1) và (2) =>đpcm
\(S=\frac{5}{2^2}+\frac{5}{3^2}+\frac{5}{4^2}+...+\frac{5}{100^2}\)
\(S=5.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)
Ta có : \(\frac{1}{2^2}>\frac{1}{2.3},\frac{1}{3^2}>\frac{1}{3.4},\frac{1}{4^2}>\frac{1}{4.5},...,\frac{1}{100^2}>\frac{1}{100.101}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\)
\(\Rightarrow5.\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)>5.\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\right)\)
\(\Rightarrow S>5.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(\Rightarrow S>5.\left(\frac{1}{2}-\frac{1}{101}\right)\)
\(\Rightarrow S>5.\frac{99}{202}\)
\(\Rightarrow S>\frac{495}{202}>\frac{404}{202}=2\)
\(\Rightarrow S>2\)
\(CM:S< 5\)
Ta có :
\(\frac{1}{2^2}< \frac{1}{1.2},\frac{1}{3^2}< \frac{1}{2.3},...,\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1-\frac{1}{100}\)
\(\Rightarrow5.\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)< 5.\frac{99}{100}\)
\(\Rightarrow S< \frac{495}{100}< \frac{500}{100}\)
\(\Rightarrow S< 5\)
Nhận thấy: \(5^{27}=\left(5^3\right)^9=125^9< 128^9=\left(2^7\right)^9=2^{63}\left(1\right)\)
và: \(2^{63}=\left(2^9\right)^7=512^7< 625^7=\left(5^4\right)^7=5^{28}\left(2\right)\)
\(\underrightarrow{\left(1\right);\left(2\right)}5^{27}< 2^{63}< 5^{28}\)
527 = (53)9 = 1259 < 1289 = (27)9 = 263 (1)
528 = (54)7 = 6257 > 5127 = (29)7 = 263 (2)
kết hợp (1) và (2) ta có: 527< 263 < 528 (đpcm)