K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2015

TA CÓ:

A=30+3+32+33+........+311

(30+3+32+33)+....+(38+39+310+311)

3(0+1+3+32)+......+38(0+1+3+32

3.13+....+38.13 cHIA HẾT CHO 13 NÊN A CHIA HẾT CHO 13( đpcm)

 

4 tháng 8 2021
Fikj Hrtui
17 tháng 12 2017

a)

\(A=3+3^2+3^3+3^4+...+3^{120}\)

\(\Rightarrow3A=3.\left(3+3^2+3^3+3^4+...+3^{120}\right)\)

\(\Rightarrow3A=3^2+3^3+3^4+3^5+...+3^{121}\)

\(\Rightarrow3A-A=\left(3^2+3^3+3^4+3^5+...+3^{121}\right)-\left(3+3^2+3^3+3^4+...+3^{120}\right)\)

\(\Rightarrow2A=3^{121}-3\)

\(\Rightarrow A=\frac{3^{121}-3}{2}\)

b)

\(2A+3\)

\(=3^{121}-3+3\)

\(=3^{121}\)

Mà 3121 là lũy thừa của 3

\(\Rightarrow\) 2A + 3 là lũy thừa của 3.

4 tháng 12 2015

d) Ta có A chia hết cho 3 

=> 2A chia hết cho 3 mà 3 cũng chia hết cho 3

=> 2A+3 chia hết cho A

8 tháng 2 2019

vế trái được viết dưới dạng :

 \(\frac{3}{5}.\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+....+\frac{1}{100!}\right)< \frac{3}{5}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\right)\)

\(=\frac{3}{5}\left(1-\frac{1}{100}\right)< \frac{3}{5}=0,6\)

21 tháng 10 2017

A = 3 + 3+ 3+ 3+ 3+ ..... +3117 + 3118 + 3119 + 3120

3A = 3+ 3+ 3+ 3+ ..... +3117 + 3118 + 3119 + 3120 + 3121

3A - A = ( 3+ 3+ 3+ 3+ ..... +3117 + 3118 + 3119 + 3120 + 3121 ) - ( 3 + 3+ 3+ 3+ 3+ ..... +3117 + 3118 + 3119 + 3120 )

2A = 3121 - 3

A = ( 3121 - 3 ) : 2 chia hết cho 2

Vậy A chia hết cho 2

25 tháng 10 2018

A = 3 +32+33+34+35+36+...+3117+3118+3119+3120

A = (3+32) + (33+34) + (35+36)+ ...+ (3177+3118) + (3119+3120)

A= 3 . (1+3) + 33(1+3 )+ 3( 1+3 ) +...+3117 ( 1+3 ) + 3119 ( 1+3 )

A=3. 4 + 3. 4 + 3. 4 + ...+ 3119 . 4

A =4. ( 3+3+ 35 + ... + 3119  )  ⋮ 2

( vì trong tích trên có thừa số 4 , mà trong tích nếu có bất kì số nào đó chia hết cho a thì tích đó chia hết cho a . Vậy tích trên có chữ số 4 vì vậy tích đó chia hết cho 2 )

8 tháng 7 2018

1. Chứng minh rằng: 3^2+3^3+3^4+...+3^101 chia hết cho 120.

Ta có:

A=3^2+3^3+3^4+...+3^101 

= (3^2+3^3+3^4+3^5) + ( 3^6+3^7+3^8+3^9) +.... + ( 3^98 + 3^99 + 3^100 + 3^101)

= 3.(3+3^2+3^3+3^4) + 3^5.(3+3^2+3^3+3^4) +....+ 3^97.(3+3^2+3^3+3^4)

= 120.(3+3^5+...+3^97) chia hết cho 120

 (đ.p.c.m)

:) câu 2 em chịu

8 tháng 7 2018

=(3^2+3^3+3^4+3^5)+......+(3^98+3^99+3^100+3^101)

=3.(3+3^2+3^3+3^4)+.....+3^97.(3+3^2+..+3^4)

=3.120+.......+3^97.120

=120.(3+...+3^97) chia hết cho 120

22 tháng 7 2023

a, chứng tỏ A chia hết cho 40

a: A=3(1+3+3^2+3^3)+...+3^129(1+3+3^2+3^3)

=40(3+...+3^129) chia hết cho 40

b: A=(3+3^2+3^3)+....+3^129(3+3^2+3^3)

=39(1+...+3^129) chia hết cho 39

c: A chia hết cho 40

A chia hết cho 3

=>A chia hết cho BCNN(40;3)=120