Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Gọi d=ƯCLN(2n+7;n+3)
=>2n+7-2n-6 chia hết cho d
=>1 chia hết cho d
=>d=1
=>phân số tối giản
b: Gọi d=ƯCLN(5n+7;2n+3)
=>10n+14-10n-15 chia hết cho d
=>-1 chia hết cho d
=>d=1
=>ĐPCM
c: Gọi d=ƯCLN(2n+1;3n+1)
=>6n+3-6n-2 chia hết cho d
=>1 chia hết cho d
=>d=1
=>ĐPCM
a:
Sửa đề: \(\dfrac{n+1}{2n+3}\)
Gọi d=ƯCLN(n+1;2n+3)
=>2n+2-2n-3 chia hết cho d
=>-1 chia hết cho d
=>d=1
=>ĐPCM
b: Gọi d=ƯCLN(4n+8;2n+3)
=>4n+8-4n-6 chia hết cho d
=>2 chia hêt cho d
=>d=1
=>ĐPCM
c: Gọi d=ƯCLN(3n+2;5n+3)
=>15n+10-15n-9 chia hết cho d
=>1 chia hết cho d
=>d=1
=>ĐPCM
a: Gọi d=UCLN(4n+8;2n+3)
\(\Leftrightarrow4n+8-4n-6⋮d\)
\(\Leftrightarrow2⋮d\)
mà 2n+3 là số lẻ
nên d=1
=>ĐPCM
b: Gọi a=UCLN(7n+4;9n+5)
\(\Leftrightarrow63n+36-63n-35⋮a\)
=>a=1
=>ĐPCM
a: Vì n+1 và n+2 là hai số tự nhiên liên tiếp
nên UCLN(n+1,n+2)=1
hay A là phân số tối giản
b: Gọi a là UCLN(n+4;2n+9)
\(\Leftrightarrow\left\{{}\begin{matrix}2n+9⋮a\\2n+8⋮a\end{matrix}\right.\Leftrightarrow1⋮a\Leftrightarrow a=1\)
Vậy: B là phân số tối giản
c: Gọi b là UCLN(12n+1;30n+2)
\(\Leftrightarrow\left\{{}\begin{matrix}60n+5⋮b\\60n+4⋮b\end{matrix}\right.\Leftrightarrow1⋮b\Leftrightarrow b=1\)
Vậy: C là phân số tối giản
a) \(\dfrac{{50}}{{85}}\)
Ta có: \(50 =2.5^2; 85= 5.17\)
Thừa số nguyên tố chung là 5 với số mũ nhỏ nhất là 1 nên ƯCLN(50, 85) = 5. Do đó, \(\dfrac{{50}}{{85}}\) chưa là phân số tối giản
Ta có: \(\dfrac{{50}}{{85}} = \dfrac{{50:5}}{{85:5}} = \dfrac{{10}}{{17}}\)
b)\(\dfrac{{23}}{{81}}\)
Ta có: \(23 = 23; 81 = 3^4\)
Chúng không có thừa số nguyên tố chung nên ƯCLN(23, 81) = 1. Do đó, \(\dfrac{{23}}{{81}}\) là phân số tối giản.
Đặt d = ƯCLN(2x+1;2x+2)
Suy ra 2x +1 ; 2x+2 chia hết cho d. Suy ra 2x +2 - 2x +1 chia hết cho d. Suy ra 1 chia hết cho d. Suy ra ƯCLN(2x+1,2x+2) =1
Vậy 2x+1/2x+2 là phân số tối giản.(đpcm).
Gọi UCLN(2x + 3 ; x + 1) = d
x +1 chia hết cho d => 2x + 2 chia hết cho d
MÀ (2x + 3) - (2x +2) = 1
=> d = 1
Vì 2x + 3 và 2x + 2 à 2 số nguyên liên tiếp
=> 2x + 3/x + 1 tối giản
Nguyễn Ngọc Quý làm thiếu. Ví dụ 0 và 1 là hai số tự nhiên liên tiếp mà ƯCLN khác 1