K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2016

Gọi d là ƯCLN(n+1;n+2)

Ta có n+1\(⋮\)d;n+2\(⋮\)d

=>[(n+2)-(n+1)]\(⋮\)d

=>[n+2-n-1]\(⋮\)d

=>1\(⋮\)d

=>d=1

Vì ƯCLN(n+1;n+2)=1 nên phân số \(\frac{n+1}{n+2}\) luôn tối giản(nEN*)

19 tháng 5 2016

Gọi d là ƯC( n+1; n+2)

=> (n+ 1) \(⋮\)d và (n+ 2) \(⋮\)d

=> ( n+2 - n-2)\(⋮\) d

=> 1\(⋮\)d

=> d=1

=> \(\frac{n+1}{n+2}\) là phân số tối giản.

Gọi d=ƯCLN(14n+3;21n+5)

=>42n+9-42n-10 chia hết cho d

=>-1 chia hết cho d

=>d=1

=>PSTG

11 tháng 5 2023

ừm...PSTG là gì ạ???

số 9 và số 10 là từ đâu ạ?

12 tháng 3 2022

Gọi ƯCLN (3n+1;4n+1) = d ( \(d\in N\)*) 

\(\left\{{}\begin{matrix}3n+1⋮d\\4n+1⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}12n+4⋮d\\12n+3⋮d\end{matrix}\right.\Rightarrow12n+4-12n-3⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)

6 tháng 5 2016

Gọi ƯCLN(n+1;n+2)=d(d\(\in\)N*

\(\Rightarrow\)n+1chia hết cho d;n+2 chia hết cho d

\(\Rightarrow\)n+2-(n+1)chia hết cho d

\(\Rightarrow\)n+2-n-1 chia hết cho d

\(\Rightarrow\)1 chia hết cho d\(\Rightarrow\)d\(\in\)Ư(1)={1}\(\Rightarrow\)d=1

Vậy phân số \(\frac{n+1}{n+2}\)là phân số tối giản

6 tháng 8 2015

Gọi UCLN (n+1;n+2) là d.

Ta có n+2-(n+1)=1 chia hết cho d=>n+1,n+2 nguyên tố cùng nhau. Do vậy n+1/n+2 là phân số tối giản

11 tháng 4 2015

ƯCLN(n+1;n+2)=1 nên \(\frac{n+1}{n+2}\)là phân số tối giản.

          Bạn nhớ chọn Đúng nha !

11 tháng 4 2015

Phân số tối giản là phân số mà tử số và mẫu số có ƯCLN \(\ne\)0.

Vì ƯCLN của n + 1 và n + 2 là 1 nên \(\frac{n+1}{n+2}\)là phân số tối giản.

16 tháng 2 2019

Gọi \(d=UCLN\left(n+1,2n+3\right)\)              \(\left(d\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)

=> ( 2n + 3 ) - ( 2n + 2 ) \(⋮\)d

                1              \(⋮\)d

=> d = 1

=> \(\frac{n+1}{2n+3}\)là phân số tối giản

16 tháng 2 2019

Gọi d là ƯCLN\((n+1,2n+3)\)

Ta có : \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2(n+1)⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)

\((2n+3)-(2n+2)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Do đó : \(\frac{n+1}{2n+3}\)là phân số tối giản\((đpcm)\)

9 tháng 5 2016

Gọi ƯCLN (n;n+1) là :d

ta có :n chia hết cho d;n+1 chia hết cho d

      => n+1 - n chia hết cho d

      => 1 chia hết cho d

      =>1=d

vậy \(\frac{n}{n+1}\) tối giản

9 tháng 5 2016

đặt ƯCLN(n;n+1)=d

=> n chia hết cho d và n+1 chia hết cho d

=> (n+1)-n chia hết cho d

=> 1 chia hết cho d

=> d=1

phân số có ƯCLN giữa tử và mẫu là 1 thì phân số đó là phân số tối giản (ĐPCM)

mk cx fan Chi Pu nè :)))

1 tháng 3 2017

Gọi ƯCLN(12n + 1,30n + 2) là d 

Ta có: 12n + 1 chia hết cho d => 5(12n + 1) chia hết cho d => 60n + 5 chia hết cho d

           30n + 2 chia hết cho d => 2(30n + 2) chia hết cho d => 60n + 4 chia hết cho d

=> 60n + 5 - (60n + 4) chia hết cho d

=> 60n + 5 - 60n - 4 chia hết cho d

=> 1 chia hết cho d => d = 1

=> ƯCLN(12n + 1,30n + 2) = 1

Vậy \(\frac{12n+1}{30n+2}\)là phân số tối giản