Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(d=UCLN\left(n+1,2n+3\right)\) \(\left(d\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)
=> ( 2n + 3 ) - ( 2n + 2 ) \(⋮\)d
1 \(⋮\)d
=> d = 1
=> \(\frac{n+1}{2n+3}\)là phân số tối giản
Gọi d là ƯCLN\((n+1,2n+3)\)
Ta có : \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2(n+1)⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)
\((2n+3)-(2n+2)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Do đó : \(\frac{n+1}{2n+3}\)là phân số tối giản\((đpcm)\)
Để phân số n+1/2n+1 là phân số tố giản thì ƯCLN(n+1,2n+1)=1
Giả sử ƯCLN(n+1,2n+1)=d
=>n+1 chia hết cho d
2n+1 chia hết cho d
=>2.(n+1) chia hết cho d
2n+1 chia hết cho d
=>2n+2 chia hết cho d
2n+1 chia hết cho d
=>(2n+2)-(2n+1) chia hết cho d
=>1 chia hết cho d
=>d=1
=>ƯCLN(n+1,2n+1)=1
=>Phân số n+1/2n+1 là phân số tối giản
Vậy phân số n+1/2n+1 là phân số tối giản
ƯCLN(n+1;n+2)=1 nên \(\frac{n+1}{n+2}\)là phân số tối giản.
Bạn nhớ chọn Đúng nha !
Phân số tối giản là phân số mà tử số và mẫu số có ƯCLN \(\ne\)0.
Vì ƯCLN của n + 1 và n + 2 là 1 nên \(\frac{n+1}{n+2}\)là phân số tối giản.
Gọi ƯCLN (n;n+1) = d ( d \(\in\)N*)
\(\left\{{}\begin{matrix}n⋮d\\n+1⋮d\end{matrix}\right.\Rightarrow n+1-n⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vậy ta có đpcm
Gọi d=ƯCLN(8n+3;6n+2)
=>\(\left\{{}\begin{matrix}8n+3⋮d\\6n+2⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}24n+9⋮d\\24n+8⋮d\end{matrix}\right.\)
=>\(24n+9-24n-8⋮d\)
=>\(1⋮d\)
=>d=1
=>\(\dfrac{8n+3}{6n+2}\) là phân số tối giản
Gọi ƯCLN(12n + 1,30n + 2) là d
Ta có: 12n + 1 chia hết cho d => 5(12n + 1) chia hết cho d => 60n + 5 chia hết cho d
30n + 2 chia hết cho d => 2(30n + 2) chia hết cho d => 60n + 4 chia hết cho d
=> 60n + 5 - (60n + 4) chia hết cho d
=> 60n + 5 - 60n - 4 chia hết cho d
=> 1 chia hết cho d => d = 1
=> ƯCLN(12n + 1,30n + 2) = 1
Vậy \(\frac{12n+1}{30n+2}\)là phân số tối giản
Gọi ƯCLN (n;n+1) là :d
ta có :n chia hết cho d;n+1 chia hết cho d
=> n+1 - n chia hết cho d
=> 1 chia hết cho d
=>1=d
vậy \(\frac{n}{n+1}\) tối giản
Bài 1: Chứng tỏ rằng phân số:
A=\(\frac{n+3}{2n+5}\)là phân số tối giản với mọi số tự nhiên n thuộc N
Gọi d là UCLN(n+3,2n+5)
=> n+3:d , 2n+5:d
=>2n+6:d , 2n+5:d
=>2n+6 - 2n+5 :d
=> 1: d
Vậy n+3/2n+5 là phan so toi gian
Minh nhanh nhat nen cho minh nhe
gọi \(\text{Ư}CLN_{\left(n+3;2n+5\right)}=d\)
\(\Rightarrow\hept{\begin{cases}n+3⋮d\\2n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+3\right)⋮d\\2n+5⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+6⋮d\\2n+5⋮d\end{cases}}}\)
\(\Rightarrow2n+6-\left(2n+5\right)⋮d\)
\(\Rightarrow2n+6-2n-5⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
vậy phân số \(\frac{n+3}{2n+5}\) là phân số tối giản
Gọi ƯCLN(n+1;n+2)=d(d\(\in\)N*
\(\Rightarrow\)n+1chia hết cho d;n+2 chia hết cho d
\(\Rightarrow\)n+2-(n+1)chia hết cho d
\(\Rightarrow\)n+2-n-1 chia hết cho d
\(\Rightarrow\)1 chia hết cho d\(\Rightarrow\)d\(\in\)Ư(1)={1}\(\Rightarrow\)d=1
Vậy phân số \(\frac{n+1}{n+2}\)là phân số tối giản