Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\dfrac{2}{3}\right)^2\left(\dfrac{2}{3}\right)^4=\left(\dfrac{2}{3}\right)^{2+4}=\left(\dfrac{2}{3}\right)^6=\dfrac{2^6}{3^6}=\dfrac{64}{729}\)
\(\text{Bài 1:a)}25\dfrac{3}{19}.\left(-\dfrac{4}{5}\right)-35\dfrac{3}{19}.\left(-\dfrac{4}{5}\right)\)
\(=\dfrac{478}{19}.\left(-\dfrac{4}{5}\right)-\dfrac{668}{19}.\left(-\dfrac{4}{5}\right)\)
\(=\left(-\dfrac{4}{5}\right).\left(\dfrac{478}{19}-\dfrac{668}{19}\right)\)
\(=\left(-\dfrac{4}{5}\right).\left(\dfrac{-190}{19}\right)\)
\(=\left(-\dfrac{4}{5}\right).\left(-10\right)=8\)
\(\text{b)}5:\left(-\dfrac{5}{2}\right)^2+\dfrac{2}{15}.\sqrt{\dfrac{9}{4}}-\left(-2021\right)^0+0,25\)
\(=5:\dfrac{25}{4}+\dfrac{2}{15}.\dfrac{3}{2}-1+\dfrac{1}{4}\)
\(=\dfrac{4}{5}+\dfrac{1}{5}-1+\dfrac{1}{4}\)
\(=1-1+\dfrac{1}{4}\)
\(=0+\dfrac{1}{4}=\dfrac{1}{4}\)
\(\text{Bài 2:a)}\dfrac{8}{5}-\dfrac{3}{5}:x=0,4\)
\(\dfrac{3}{5}:x=\dfrac{8}{5}-0,4=\dfrac{6}{5}\)
\(x=\dfrac{3}{5}.\dfrac{5}{6}=\dfrac{1}{2}\)
\(\text{b)}\left(3x-\dfrac{1}{2}\right)^2+\dfrac{21}{25}=1\)
\(\left(3x-\dfrac{1}{2}\right)^2\) \(=1-\dfrac{21}{25}=\dfrac{4}{25}=\pm\left(\dfrac{2}{5}\right)^2\)
\(\text{Vậy }3x-\dfrac{1}{2}=\dfrac{2}{5}\)
\(3x\) \(=\dfrac{2}{5}+\dfrac{1}{2}=\dfrac{9}{10}\)
\(x\) \(=\dfrac{9}{10}.\dfrac{1}{3}=\dfrac{3}{10}\)
\(\text{hoặc }3x-\dfrac{1}{2}=\dfrac{-2}{5}\)
\(3x\) \(=\left(\dfrac{-2}{5}\right)+\dfrac{1}{2}=\dfrac{1}{10}\)
\(x\) \(=\dfrac{1}{10}.\dfrac{1}{3}=\dfrac{1}{30}\)
\(\Rightarrow x\in\left\{\dfrac{3}{10};\dfrac{1}{30}\right\}\)
Bài 2:
a: =>3/5:x=6/5
hay x=3/5:6/5=1/2
b: \(\Leftrightarrow\left(3x-\dfrac{1}{2}\right)^2=\dfrac{4}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-\dfrac{1}{2}=\dfrac{2}{5}\\3x-\dfrac{1}{2}=-\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{10}\\x=\dfrac{1}{30}\end{matrix}\right.\)
Bài 4:
a: Xét ΔABI và ΔACI có
AB=AC
AI chung
BI=CI
Do đó: ΔABI=ΔACI
b: Xét tứ giác ABDC có
I là trung điểm của BC
I là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra: AB=CD
Thế méo nào cho lẻ độ @@
Giả sử \(\widehat{xOz}+\widehat{yOz}+\widehat{yOt}=250^o46'\)
mà \(\widehat{xOz}+\widehat{yOz}=180^o\)
\(\Rightarrow\widehat{yOt}=250^o46'-180^o=70^o46'\)
Mặt khác \(\widehat{yOt}=\widehat{xOz}\left(d.d\right)\Rightarrow\widehat{yOt}=\widehat{xOz}=70^o46'\)
Ta có:
\(\widehat{yOt}+\widehat{yOz}=180^o\Rightarrow\widehat{yOz}=180^o-70^o46'=109^o14'\)
mà \(\widehat{yOz}=\widehat{xOt}\left(d.d\right)\Rightarrow\widehat{yOz}=\widehat{xOt}=109^o14'\)
Vậy...........
Chúc bạn học tốt!!!
Lời giải:
\(x^2\geq 0, \forall x\in\mathbb{R}\)
\(x^8=(x^4)^2\geq 0, \forall x\in\mathbb{R}\)
\(\Rightarrow G(x)=2+7x^2+x^8\geq 2+7.0+0>0, \forall x\in\mathbb{R}\)
Như vậy, $G(x)\neq 0$ với mọi $x\in\mathbb{R}$. Suy ra đa thức $G(x)$ không có nghiệm thực.
Cảm ơn ạ