Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3+3^2+3^3+....+3^{60}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+....+\left(3^{59}+3^{60}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{59}\left(1+3\right)\)
\(=\left(1+3\right)\left(3+3^3+....+3^{59}\right)\)
\(=4\left(3+3^3+....+3^{59}\right)\)\(⋮\)\(4\)
\(A=3+3^2+3^3+...+3^{60}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+....+\left(3^{58}+3^{59}+3^{60}\right)\)
\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\)
\(=\left(1+3+3^2\right)\left(3+3^4+....+3^{58}\right)\)
\(=13\left(3+3^4+...+3^{58}\right)\)\(⋮\)\(13\)
mà (4;13) = 1
nên A chia hết cho 52
Đặt tổng trên là A
Ta có: \(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^{59}.\left(1+2\right)\)
\(=2.3+2^3.3+...+2^{59}.3\)
\(=3.\left(2+2^3+...+2^{59}\right)\)chia hết cho 3
=> A chia hết cho 3 (Đpcm).
Ta có :
2+2^2+2^3+2^4+...+2^59+2^60=(2+2^2)+(2^3+2^4)+...+(2^59+2^60)
=2x3+2^3x3+...+2^59x3
=(2+2^3+...+2^59)x3
Vì 3 chia hết cho 3 nên tổng trên chia chiết cho 3 (đpcm)
Số số hạng của B:
60 - 1 + 1 = 60 (số)
Do 60 chia hết cho 3 nên ta nhóm các số hạng của B thành nhóm 3 số hạng như sau:
B = 3 + 3² + 3³ + ... + 3⁶⁰
= (3 + 3² + 3³) + (3⁴ + 3⁵ + 3⁶) + ... + (3⁵⁸ + 3⁵⁹ + 3⁶⁰)
= 3.(1 + 3 + 3²) + 3⁴.(1 + 3 + 3²) + ... + 3⁵⁸.(1 + 3 + 3²)
= 3.13 + 3⁴.13 + ... + 3⁵⁸.13
= 13.(3 + 3⁴ + ... + 3⁵⁸) ⋮ 13
Vậy B ⋮ 13
\(A=3^1+3^2+...+3^{60}\)
\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\)
\(A=3\cdot\left(1+3+3^2\right)+3^4\cdot\left(1+3+3^2\right)+...+3^{58}\cdot\left(1+3+3^2\right)\)
\(A=3\cdot\left(1+3+9\right)+3^4\cdot\left(1+3+9\right)+...+3^{58}\cdot\left(1+3+9\right)\)
\(A=3\cdot13+3^4\cdot13+...+3^{58}\cdot13\)
\(A=13\cdot\left(3+3^4+...+3^{58}\right)\)
Mà: \(13\cdot\left(3+3^4+...+3^{58}\right)\) ⋮ 13
\(\Rightarrow A\) ⋮ 13
B = \(3+3^2+3^3+.....+3^{59}+3^{60}\)
\(=3.\left(1+3\right)+3^3.\left(1+3\right)+....+3^{59}.\left(1+3\right)\)
\(=3.4+3^3.4+....+3^{59}.4\)
\(=4.\left(3+3^3+...+3^{59}\right)⋮4\)
Vậy B chia hết cho 4
Còn phần b) bạn cũng nhóm ra như trên nhưng thêm một số để có tổng là 13
VD : ( 1+3+32)=13 đó
bạn tự làm theo nha
k mik
\(\)
ta có :
A = 3 + 32 + 33 + ...+ 359 + 360
A = ( 3 + 32 + 33 ) + ( 34 + 35 + 36 ) + ...+ ( 358 + 359 + 360 )
A = 3( 1 + 3 + 32) + 34(1+3+32) + ...+ 358(1+3+32 )
A = 3. 13 + 34.13 + ...+ 358.13
=> A chia hết cho 13
Ta chú ý : \(3+3^2+3^3=3\left(1+3+9\right)=3.13\)
\(\Rightarrow A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+..+\left(3^{58}+3^{59}+3^{60}\right)\)
\(\Leftrightarrow A=3.13+3^4.13+...+3^{58}.13\)
\(\Leftrightarrow A=13\left(3+3^4+..+3^{58}\right)⋮13\)
Vậy A chia hết cho 13