Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có lộn đề ko bn ơi
c). 1081.46
d). 1000
e. P=(x−y)(x2+xy+y2)−2y3=x3−y3−2y3=x3−3y3=(12)3−3.(23)3=−5572
1052 - 25 = 1052 - 52
= (105 + 5)(105 - 5)
= 110.100
= 11000
a) \(=\left(127+73\right)^2=200^2=40000\)
b) \(=18^8-\left(18^8-1\right)=1\)
c) \(=\left(100+99\right)\left(100-99\right)+\left(98+97\right)\left(98-97\right)+...+\left(2+1\right)\left(2-1\right)\)
\(=100+99+98+97+...+2+1=5050\)
d) biến đổi thành \(20^2-19^2+18^2-17^2+..+2^2-1^2\)
rồi giải ra như trên
\(100^2-99^2+98^2-97^2+...+2^2-1^2\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=199+195+...+3\)
Số lượng số hạng:
\(\left(199-3\right):4+1=50\) (số hạng)
Tổng:
\(\left(3+199\right)\times50:2=5050\)
Lời giải:
$=(100^2-99^2)+(98^2-97^2)+....+(2^2-1^2)$
$=(100-99)(100+99)+(98-97)(98+97)+...+(2-1)(2+1)$
$=100+99+98+97+...+2+1=100(100+1):2=5050$
\(\frac{x-1009}{1010}+\frac{x-1007}{1012}=\frac{x-1010}{1009}+\frac{x-1012}{1007}\)
\(\Rightarrow(\frac{x-1009}{1010}-1)+\left(\frac{x-1007}{1012}-1\right)=\left(\frac{x-1010}{1009}-1\right)+\left(\frac{x-1012}{1007}-1\right)\)
\(\Rightarrow\frac{x-2019}{1010}+\frac{x-2019}{1012}-\frac{x-2019}{1009}-\frac{x-2019}{1007}\)
\(\Rightarrow\left(x-2019\right)\left(\frac{1}{1010}+\frac{1}{1012}-\frac{1}{1009}-\frac{1}{1007}\right)=0\)
Ta có
\(\frac{1}{1010}+\frac{1}{1012}-\frac{1}{1009}-\frac{1}{1007}\ne0\Rightarrow x-2019=0\Rightarrow x=2019\)
\(\frac{x-1009}{1010}+\frac{x-1007}{1012}=\frac{x-1010}{1009}+\frac{x-1012}{1007}\)
\(\frac{x-1009}{1010}-1+\frac{x-1007}{1012}-1=\frac{x-1010}{1009}-1+\frac{x-1012}{1007}\)\(\frac{x-2019}{1010}+\frac{x-2019}{1012}-\frac{x-2019}{1009}-\frac{x-2019}{1007}=0\)
\(\left(x-2019\right)\left(\frac{1}{1010}+\frac{1}{1012}-\frac{1}{1009}-\frac{1}{1007}\right)=0\)
1/1010 + 1/1012 - 1/1009 - 1/1007 khác 0
=> x - 2019 =0 => x = 2019
\(VT-VP=\left(100^2-96^2\right)+\left(105^2-101^2\right)-\left(107^2-103^2\right)-\left(98^2-94^2\right)\)
\(=\left(100-96\right)\left(100+96\right)+\left(105-101\right)\left(105+101\right)-\left(107-103\right)\left(107+103\right)-\left(98-94\right)\left(98+94\right)\)
\(=4\left(196+206-210-192\right)=0\)
=> VT=VP