Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
x2 – 2xy + y2 + 1
= (x2 – 2xy + y2) + 1
= (x – y)2 + 1.
(x – y)2 ≥ 0 với mọi x, y ∈ R
⇒ x2 – 2xy + y2 + 1 = (x – y)2 + 1 ≥ 0 + 1 = 1 > 0 với mọi x, y ∈ R (ĐPCM).
Bạn xem lại đề nhé: Ví dụ chọn x=2, y=1 ta có: 22-4.2.1+1+2=-1<0
a) \(2x^2+2x+1=0\)
\(\Rightarrow2x^2+2x=-1\)
\(\Rightarrow2x\left(x+1\right)=-1\)
⇒ Pt vô nghiệm
a: \(2x^2+2x+1=0\)
\(\text{Δ}=2^2-4\cdot2\cdot1=4-8=-4< 0\)
Vì Δ<0 nên phương trình vô nghiệm
a) \(x^2+xy+y^2+1\)
\(=x^2+xy+\dfrac{y^2}{4}-\dfrac{y^2}{4}+y^2+1\)
\(=\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\)
mà \(\left\{{}\begin{matrix}\left(x+\dfrac{y}{2}\right)^2\ge0,\forall x;y\\\dfrac{3y^2}{4}\ge0,\forall x;y\end{matrix}\right.\)
\(\Rightarrow\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1>0,\forall x;y\)
\(\Rightarrow dpcm\)
b) \(...=x^2-2x+1+4\left(y^2+2y+1\right)+z^2-6z+9+1\)
\(=\left(x-1\right)^2+4\left(y^{ }+1\right)^2+\left(z-3\right)^2+1>0,\forall x.y\)
\(\Rightarrow dpcm\)
\(-25x^2+5x-1=-\left(25x^2-5x+\dfrac{1}{4}\right)-\dfrac{3}{4}=-\left(5x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}< 0\forall x\)
\(x^2+2y^2-2xy+2x-4y+3\)
\(=x^2+y^2+y^2-2xy+2x-2y-2y^2+1+1+1\)
\(=\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+\left(2x-2y\right)+1+1\)
\(=\left(x-y\right)^2+2\left(x-y\right)+1+\left(y-1\right)^2+1\)
\(=\left[\left(x-y\right)^2+2\left(x-y\right)+1\right]+\left(y-1\right)^2+1\)
\(=\left(x-y+1\right)^2+\left(y-1\right)^2+1\)
Vì \(\left(x-y+1\right)^2+\left(y-1\right)^2\ge0\forall x;y\)
Nên \(\left(x-y+1\right)^2+\left(y-1\right)^2+1>0\forall x;y\)
Vậy \(x^2+2y^2-2xy+2x-4y+3>0\forall x;y\)
đùa nhau
Ta có : \(x^2+y^2-2x-2y+2017\)
\(=\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+2015\)
\(=\left(x-1\right)^2+\left(y-1\right)^2+2015\)
Vì : \(\left(x-1\right)^2\ge0\forall x\in R\) ; \(\left(y-1\right)^2\ge0\forall x\in R\)
Nên : \(\left(x-1\right)^2+\left(y-1\right)^2+2015\ge0+0+2015=2015>0\forall x\in R\)
Vậy \(x^2+y^2-2x-2y+2017\ge0\forall x\in R\)